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1  WHAT IS VISCOELASTICITY? 
Solids, fluids and gases. We are used to them in our day to day life. We breath the air, drink the 

water and eat the apple. We know that below 0 degrees Celsius water is frozen into ice. At room 

temperature water is a fluid and above 100 degrees Celsius it vaporizes. We live with the idea that 

matter is either a gas or a fluid or a solid. 

 

Yet there are many materials that cannot be so easily classified. These materials can behave as a fluid 

but also as an elastic solid. That gives them properties that are stunning. We call these materials 

viscoelastic materials because, at the same time, they have both fluid (viscous) properties and elastic 

properties. 

 

What is causing these viscoelastic properties? 

The answer is astonishing simple: any material 

that consists of long flexible fibre-like particles 

is in nature viscoelastic. Because of their 

shape the particles can temporarily connect to 

each other which causes the elastic 

properties. On the other hand, due to their 

flexibility, they will easily slide along each 

other which causes the fluid properties. 

 

Typical examples of viscoelastic materials are 

spaghetti, tobacco, a pile of worms moving 

through each other and (of course) polymers. Polymers are always viscoelastic because they consist 

out of long molecules which can be entangled with their neighbours. 

 
Figure 1: Spaghetti is a viscoelastic material. 
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2 ABOUT POLYMER MOLECULES 
2.1 MANY REPEAT UNITS MAKE MACROMOLECULE 
Polymer molecules are long chains built from 

many small identical repeat units, also called 

monomers. For example polyvinylchloride 

(PVC) consists of many vinylchloride (-CH2-

CHCl-) repeat units. And polyethylene (PE) 

consists of many ethylene (-CH2-CH2-) repeat 

units. The number of repeat units in a 

macromolecule can be very large: up to 

10000 or more. 

 

2.2 CONFORMERS AND CONFORMATION 
Each repeat unit has one or more bonds that allow rotation. Such 

bonds are called conformers. They make it possible that the shape 

(conformation) of the repeat unit changes and thus also the shape 

(conformation) of the polymer molecule.  

 

Suppose that a repeat unit has three conformers and that each 

conformer has two stable directions. Such a repeat unit would be 

able to take 23 = 8 different shapes or conformations. A 

macromolecule made of N such repeat units would be able to have 

23N different conformations. 

 

2.3 KUHN SEGMENT 
Each repeat unit is hindered in its freedom by 

neighbouring repeat units and valence angles. 

Their possibility to change their direction is 

limited. It takes several repeat units in a row 

to be able to randomly take any direction. 

Such a group of repeat units is called a Kuhn 

segment. The number of repeat units in a 

Kuhn segment is a fixed number for each 

polymer. It is called the characteristic ratio 

C∞. Some examples of this ratio and the size 

of the Kuhn segments are shown in the table below.  

 

Characteristic ratio and Kuhn length for several polymers. 

 PB PP PE PVC PMMA PS PC 
C∞ 5.5 6.0 8.3 6.8 8.2 9.5 1.3 

lK (Ǻ) 10 11 15 26 15 18 2.9 

 

Let us assume that a polymer molecule contains N repeat units. Then the number of Kuhn segments 

in the macromolecule NK can be calculated from: 

 

 
Figure 2: Model of PVC macromolecule 
(www.shutterstock.com). 

 
Figure 3: Restriction in possible 
conformations due to fixed valence 
angle. 

 
Figure 4: Schematic representation of the macromolecule 
(coloured lines) and the Kuhn segments (black lines).. 
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Equation 1 



=
C

N
NK

 

 

2.4 SHAPE AND SIZE OF MACROMOLECULE 
Macromolecules are never fully stretched. Each 

Kuhn segment can randomly take any direction 

in space. The shape of the macromolecule in 

space therefor follows a random path (random 

coil conformation).  

 

Statistics now predict for the random coil 

conformation that the square of the average 

end to end distance of such a chain ( 2

0r ) 

consisting out of NK chain segments with bond 

length lK will be: 

 
Equation 2 

KK Nlr 22
0 =  

 

2.5 ENTANGLEMENTS AND BLOBS 
The macromolecule is surrounded by many other macromolecules in the plastic. They will therefore 

all interfere with each other. Each macromolecule will be entangled with several other 

macromolecules. At each entanglement, the possible movements of the Kuhn segments will be 

seriously limited. 

 

In between two entanglements the Kuhn 

segments will follow a random path. This part 

of the macromolecule is called a blob. If there 

are on average Ne Kuhn segments in a blob, 

then the average radius of the blobs rblob will 

be: 

 
Equation 3 

eKblob Nlr 22 =  

 

Our macromolecule contains NK/Ne blobs. Also 

the blobs will follow a random path in space. 

Therefore the start to end distance 2

0r  of the macromolecule will be: 

Equation 4 

KK

e

K
blob Nl

N

N
rr 222

0 ==  

 

 
Figure 5: Schematic view of a freely jointed chain. 

 
Figure 6: Macromolecule with entanglements. Blobs are 
formed between the entanglements. 
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This is the same size as that of a macromolecule without any blobs. Therefore, the size of the 

macromolecule is independent of the number of entanglements (or blobs) present. 
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3 POLYMER STRUCTURE 
3.1 DISORDERED STRUCTURE 
A polymeric material is build-up from many 

randomly coiled polymer molecules that are 

extensively entangled with each other. This 

results in a kind of network that connects all 

polymer molecules with each other (Figure 7.).  

 

Because of these entanglements the 

interaction between the molecules is very 

strong. Each individual molecule will intersect 

with many other molecules. The polymer 

structure can best be visualized with, for 

example, a pile of worms or a pan with 

spaghetti. 

 

3.2 ENTANGLEMENTS AND NETWORK 

DENSITY 
All polymer molecules are connected with 

each other by means of physical 

entanglements or chemical crosslinks. An 

entanglement can be viewed as a connection 

between two molecules caused by a kink or 

knot, as shown in Figure 8.  

 

In the glass phase the macromolecules have 

limited mobility. They can slightly change their 

conformation by rotating chain segments, but 

they cannot move into another position. 

Therefor the number of entanglements in the 

glass phase is constant and equal to the 

entanglement density at the glass – rubber 

transition. 

 

In the melt phase such an entanglement has a 

finite lifetime: the molecules can disentangle 

from each other by simply moving into 

another position (reptation). This happens at higher temperatures. Polymers that show this kind of 

bindings are called thermoplastics. 

 

The network density or entanglement density is defined as the number of entanglements per unit 

volume (m3). Typical values for the entanglement density range from 3 x 1025 m-3 for PS to 3,9 x 1026 

m-3 for PC. Some values of the network density are shown in Table 1. 

 

 
Figure 7: In a polymer the long molecules are all entangled 
with each other (scitation.aip.org). 

 
Figure 8: Physical entanglement between two neighbouring 
polymer molecules (go-entangle.blogspot.ca). 
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Table 1: Network density for some 
polymers 

Polymer name 
Network 

density (m-3) 

PVC 1,00 x 1026 

PC 3,90 x 1026 

PS 3,00 x 1025 

PMMA 8,00 x 1025 

PE100 2,80 x 1026 

PE80 2,80 x 1026 

 

The network density c is directly related to the number of entangled Kuhn segments Ne via: 

 
Equation 5 

𝜈𝑐 =
𝜌

𝑚𝐾𝑁𝑒
 

 

3.2.1 Influence of entanglements on mechanical properties 

The number of entanglements per volume (the entanglement density or the network density e) has 

a pronounced influence on the mechanical properties of the glass phase, the rubber phase and the 

melt phase. Polymers with a high entanglement density are tougher than polymers with a low 

entanglement density. This is for example reflected in a strongly reduced growth of cracks in 

polymers with a high network density. Such polymers show an increased resistance against 

environmental stress cracking. 

 

In the glass phase the entanglement density influences the strain hardening modulus of the polymer 

during the tensile test and the long-term ductile and brittle failure of the polymer. With increasing 

entanglement density, the strain hardening modulus increases linearly and the long-term failure 

times increase exponentially. This is illustrated in Figure 11 and Figure 12. 

 
Figure 9: Tensile test results of PMMA with different network 
densities. 

 
Figure 10: Tensile test results of PS with different network 
densities. 
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Figure 11: Strain hardening modulus versus network density 
for several PS / PPO blends and cross-linked PS. 

 
Figure 12: Environmental stress crack resistance versus strain 
hardening modulus for several HDPE types. 

 

In the rubber and the melt phase the network density is directly related to the rubber shear modulus. 

From the rubber elasticity theory, it follows that the shear modulus in the rubber phase is linearly 

dependant on the network density and the temperature: 

 
Equation 6 

𝐺𝑟𝑢𝑏 = 𝜈𝑐𝑘𝑇 

 

That would imply that the shear modulus 

would slowly increase with temperature 

above the glass transition temperature Tg. For 

chemically cross-linked polymers that is 

indeed the case but not for simply entangled 

polymers. Those polymers usually show a 

decrease of the rubber shear modulus with 

increasing temperature. An example is given 

in Figure 13 that shows the dynamic modulus 

of PS-PPO blends. The rubber modulus 

decreases with temperature.  

 

The network in these polymers is built by 

entanglements that act as temporary physical 

cross-links. Upon increasing the temperature, 

the free volume between the molecules will increase and this will gradually remove many of the 

adjacent and hooked entanglements in the polymer. 

 

3.3 FREE VOLUME FRACTION 
Because of their unordered structure the molecules do not fit perfectly together. This creates some 

empty space between the molecules that is called free volume. This free volume takes up about 5 to 

10 % of the total volume of a polymer structure. With increasing temperatures, the free volume 

increases and with reducing temperatures the free volume reduces. 

 

 
Figure 13: Dynamic modulus of PS-PPO blends. The rubber 
modulus decreases exponentially with temperature. 
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The level of free volume is very important for the mobility of the polymer molecules. At high 

temperatures, where the free volume is relatively large, the mobility of the molecules will be very 

high. They can move around in the polymer structure. It is like a room in which only a few people are 

present: they can wander around without seriously hindering their neighbours. 

 

 At low temperatures however the free volume is low. Now the molecules are so close together that 

they hinder each other in their movements. Just consider the same room but now densely packed 

with people: with enough people pressed in the room it may even be impossible for them to move 

their arms or legs. 

 

The free space or the free volume is the 

difference between the volume of the 100 % 

amorphous structure and the volume of the 

100 % crystalline structure. In Figure 14 a 

simple diagram is shown of the crystalline and 

the amorphous volume around the glass 

transition temperature TG. The crystalline 

volume continuously increases with 

temperature with a volume expansion 

coefficient 0. The amorphous phase always 

has a higher volume and its volumetric 

expansion coefficient suddenly increases from 

G to R above the glass transition 

temperature TG due to the segmental rotations. Below the glass transition temperature, the 

expansion coefficient of the crystalline state is approximately the same as that of the amorphous 

state (c  a).  

 

For the physical processes the free volume fraction, which is the ratio of the free volume (va – vc) and 

the total volume (va), is more important. It is defined as: 

 
Equation 7 

𝜓𝑓𝑟𝑒𝑒 =
𝑣𝑎 − 𝑣𝑐

𝑣𝑎
=

(𝛼𝑎 − 𝛼𝑐)(𝑇 − 𝑇∞)

1 + 𝛼𝑎(𝑇 − 𝑇∞)
≈ (𝛼𝑎 − 𝛼𝑐)(𝑇 − 𝑇∞) 

 

Equation 7 is only valid for T > T. The free volume fraction (free) is calculated relative to the 

Kauzmann temperature T. This is the (virtual) temperature where the rubber phase would have the 

same relative volume as the crystalline phase and the free volume would be zero (see Figure 14). The 

free volume fraction near the glass transition temperature is usually about 0.025 to 0.0050 for most 

polymers. 

 

 
Figure 14: Schematic diagram of crystalline volume and 
amorphous volume. The difference is the free volume. 
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4 MOBILITY OF POLYMER MOLECULES 
Polymer molecules can be regarded as chains from flexible segments (Kuhn segments) that are 

entangled with each other. They have only two ways to change their shape or change their position: 

rotation of the Kuhn segments and reptation of the entire molecule. 

 

4.1 ROTATION OF KUHN SEGMENTS 
Due to the thermal vibrations of the atoms 

the Kuhn segments in a polymer molecule can 

rotate in any direction. This allows the 

molecule to change its shape locally within a 

blob and, if applicable, to change its entire 

shape under load. The rotations of the Kuhn 

segments make a polymer flexible. 

 

The time needed for these rotations, the 

rotation time, is strongly temperature 

dependent. At low temperatures the rotation 

time is long and at high temperatures the rotation time is short. At a sufficiently high temperature 

the Kuhn segments have a rotation time of, for example, 0.001 second. Now the polymer molecules 

easily change their shape under a force. The polymer is flexible now. On the other hand, at low 

temperature the rotation time can be as high as 1 million seconds. The polymer behaves as a rigid 

(stiff) solid now. 

 

We humans experience the polymer as 

flexible when the rotation time is less than 1 

second. The polymer feels as a rubbery 

substance. We experience the polymer as stiff 

when the rotation frequency is much higher 

than 1 second. The polymer now feels as a 

rigid glassy substance. The temperature at 

which the rotation time is 1 second is the 

glass transition temperature. 

 

Rotation of the Kuhn segments allow for large 

deformations in the polymer molecule. However, the position of each molecule relative to others 

does not change. Due to this, a polymer deformed by a force will regain its original shape when 

heated close to the glass transition temperature. 

 

4.2 REPTATION OF POLYMER MOLECULES 
Due to the wriggling motions of all the rotation Kuhn segments the entire polymer molecule may 

shift its position a little bit. The surrounding molecules will limit this shift to a displacement along the 

axis of the molecule. Other displacements are not possible. The polymer molecule moves as a snake 

along its axis through the other molecules. This way of motion is called reptation. 

 

 
Figure 15: Rotation of the Kuhn segments make a polymer 
molecule flexible. 

 
Figure 16: Below the glass temperature a polymer can be 
deformed but will not forget its original shape. 
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Compared to rotation reptation is a relatively 

slow process. Due to the random nature of 

the rotations that counteract each other a 

single shift over the length of one Kuhn 

segment may take very many rotations. 

 

After some time, the polymer molecule will 

have reptated over its entire length. It has 

moved into an entirely new position 

compared to the surrounding molecules. The 

time that this process takes is called the 

reptation time. At times longer than the reptation time the polymer behaves as a fluid because the 

position of the molecules changes continuously. Contrary to the rotation of the Kuhn segments the 

reptation makes the polymer to forget its original shape. 

 

We humans experience a polymer as a fluid when the reptation time is less than 1 second. In case 

that the reptation time is higher than 1 second then we experience the polymer as a rubber. The 

temperature at which the reptation time is 1 second is the rubber-melt transition temperature. 

 

4.3 KUHN SEGMENT ROTATION TIME 
4.3.1 Rotation above the glass transition temperature 

Segments of the polymer molecules rotate at a certain frequency causing the molecules to reptate 

through each other. The rotations in the polymer molecules occur at a time dictated by thermal 

activation. The energy barrier Erot that must be passed is dependent on temperature: 

 
Equation 8 

( )








=

kT

TErot
rotrot exp0,  

 

In Equation 8 rot,0 is the rotation time at infinitely high temperatures and will be of the order of 

magnitude of 10-13 s. 

 

Just like any other material polymer molecules also tend to rearrange themselves into crystalline 

structures when the temperature is sufficiently low. Due to their disordered nature however, 

polymer molecules will have difficulties in forming such crystalline structures, if they can at all. Some 

polymers like polyethylene are at best partially crystalline below the melting temperature; many 

polymers show no crystallinity at all.  

 

Yet all polymers, whether they are partially crystalline or not, do experience an attractive potential U 

to crystallize. This causes clusters of polymer segments that move simultaneously. Such clusters are 

called cooperatively rearranging regions (CRR’s). The nett result is that segmental rotation of one 

molecule is copied by neighbouring molecules into a cooperative action. In this way, local crystalline 

structures are formed on a sub-molecular scale. 

 

 
Figure 17: Reptation is caused by the random rotation of the 
Kuhn segments. 
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Upon further cooling the volume continues to 

decrease as if the material is still a liquid. However, 

the level of cooperativity continues to increase. 

More and more polymer segments are coupled into 

larger groups that act together in the same way. 

The effective activation energy (Erot) for such co-

ordinated movements increases linearly with the 

number of cooperating segments (z0). 

 
Equation 9 

00EzErot =  

 

E0 can be regarded as the energy barrier for rotation of a single repeat unit. A Kuhn segment consists 

of c∞ repeat units. Therefor the minimum activation energy for the rotation of a Kuhn segment is 

c∞E0. Also the minimum level of the number of cooperating segments z in a CRR will be c∞. 

 

The fraction of polymer segments p which have a thermal energy higher than the attractive 

potential is given by: 

 
Equation 10 









−=

kT

U
p exp

 

 

This polymer fraction is relatively flexible because their mobility is not hindered (not cooperative). 

We call this fraction the  -phase and this phase can also be considered as a melt. The other fraction 

consists of cooperatively moving polymer segments that are strongly hindering each other. We call 

this fraction the -phase. This phase can be considered as being formed from crystallites on a sub-

molecular scale. 

 

At the crystalline melting temperature Tm the probability for a segment to leave the CRR is just as 

large as the probability to enter the CRR: p = ½. We then find for the attractive potential U: 

 
Equation 11 

( )2ln
2

1
exp m

m

kTU
kT

U
p ==










−=  

 

We then find for the fraction of the -phase: 

 
Equation 12 

TTmp
/

2
−

=  

 

 
Figure 18: Graphical illustration of CRR’s in the 

polymer. 
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The CRR’s in the -phase are separated from 

each other by the flexible -phase with a 

thickness of at least one segment. The -

phase and the -phase, at a temperature 

above the glass transition temperature, are in 

a dynamic equilibrium with each other. 

Depending on the local thermal energy 

segments in the  -phase can change into the 

-phase and vice versa. 

 

The number of cooperating segments in a CRR 

is estimated by means of volume 

considerations. Let us assume that the shape 

of the CRR’s is approximately spherical and 

that each CRR is surrounded by a layer of the -phase with a thickness of half a segment. If the 

volume of one segment is V0 then we can write for the volume of the -phase V and the -phase V: 

 
Equation 13 

00VzV =
 and 0

3/2
0

2

3
VzV =  

 

The fraction of polymer segments p in the -phase is equal to the volume fraction of the -phase: 

 
Equation 14 

1
3

2

1

3/1
0 +

=
+

=

z
VV

V
p






 

 

It then follows for the number of segments in a CRR: 

 
Equation 15 

3

0
2

33













 −
=





p

p
z  with 

TTmp
/

2
−

=  

 

This equation only holds for z0  2 (or p  0.54) because a CRR must have at least two coupled 

segments. 

 

The rotation time is now described with:  

 
Equation 16 









=

kT

Ez
rotrot

00
0, exp  with 

3

0
2

33













 −
=





p

p
z  and 

TTmp
/

2
−

=  

 

 
Figure 19: Schematic representation of the -phase and the 

-phase. The CRR’s in the -phase are separated by a one 

segment thick layer of -phase. 
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The value of E0 can be calculated from the glass transition temperature. At Tg the rotation time is, by 

definition, 1 s. It then follows for E0 using Equation 16: 

 
Equation 17 

( )
)(

ln

0

0,

0

g

rotg

Tz

kT
E


−=  

 

A graphical representation of Equation 16 is shown in Figure 20 for PVC with rot,0 = 10-13 s, Tm = 513 K 

and Tg = 358 K. E0 was determined to be 8.9 x 10-21 J. 

 

 
Figure 20: Segmental rotation times for PVC. Dots measured data. Line calculated according to Equation 16 with with rot,0 = 
10-13 s, Tm = 513 K and Tg = 358 K. E0 was determined to be 8.9 x 10-21 J. 

 

4.4 CHAIN REPTATION TIME 
4.4.1 General 

Chain reptation, the axial movement of the polymer molecules, requires the combined motion of 

many chain segments. That means that reptation is virtually impossible at temperatures below the 

glass transition temperature. Also, in a limited region above the glass transition temperature where 

the frequency of the segment rotation is above 1 s-1 reptation is still difficult.  

 

In the melt phase the polymer molecules are flexible: their chain segments can make many rotations 

in a short time. The macromolecules are also able to slide into other positions by means of reptation. 

This allows for large plastic deformations of the material: it is a fluid with elastic properties. 
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4.4.2 Sliding of macromolecules through tubes 

Due to all surrounding macromolecules it is 

impossible for a single polymer molecule to 

move freely in any direction. The 

macromolecule must “slide” along its own 

axis, in a kind of a tube formed by the other 

molecules. Driven by thermal energy each 

polymer chain can diffuse via a snake-like 

motion known as reptation. The 

macromolecule makes forward and backward 

jumps in a random way. The movement is to 

be considered as a one-dimensional random 

walk.  

 

4.4.3 Reptation time 

The diffusion of the macromolecule through the matrix is caused by the uncorrelated displacements 

of the Kuhn pairs. Suppose that we have a fictive molecule that consists of 1 Kuhn segment. It will 

make steps with a size lK randomly backwards and forwards (+ and -) during rot seconds. Another 

molecule that consists of 2 Kuhn segments has 4 different step configurations (++, +-, -+ and --). Only 

2 of these configurations will result in a displacement with size b. A single step forwards or 

backwards will therefor take 2 rot seconds. A macromolecule with NK Kuhn segments will reptate 

randomly backwards and forwards with step size lK during a time of NKrot seconds. 

 

The reptation time is the time needed for the macromolecule to diffuse over NK Kuhn segments: 

 
Equation 18 

𝜃𝑟𝑒𝑝 = 𝑁𝐾
2𝑁𝐾𝜃𝑟𝑜𝑡 = 𝑁𝐾

3𝜃𝑟𝑜𝑡 

 

According to Equation 18 the reptation time strongly increases with temperature and it is 

proportional to the third power of the number of Kuhn segments in the macromolecule (NK) or the 

molecular weight (mw). Investigations have shown that the reptation time increases even faster: it 

increases with the molecular weight to the power 3.5: 

 
Equation 19 

𝜃𝑟𝑒𝑝 = 𝑁𝐾
3.5𝜃𝑟𝑜𝑡 

 

The reptation time is thus directly proportional to the rotation time. All temperature dependant 

effects of the rotation time will be duplicated in the reptation time: 

 
Equation 20 

𝜃𝑟𝑜𝑡 = 𝑁𝐾
3.5𝜃𝑟𝑜𝑡,0 𝑒𝑥𝑝 (

𝑧0𝐸0

𝑘𝑇
) with 
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Figure 21: Polymer chain diffuses through tube. 
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5 GLASS, RUBBER AND MELT PHASE 
 

We distinguish three different phases in the polymer: the glass phase, the rubber phase and the melt 

phase. On top of this the polymer can be partially crystalline and partially amorphous. 

 

5.1 GLASS PHASE 
At low enough temperatures the rotation time of the Kuhn segments is far more than 1 second. The 

macromolecules are rigid now. The polymer is difficult to deform: any load will hardly change the 

shape of the polymer molecules. The chain segments can only bend a little bit. An applied force will 

only result in a small deformation of the plastic. When a polymer is in this condition then it is said to 

be in the glass phase. 

 

Many plastic products like pipes, toys, 

cutlery, etcetera, need to be able to take up 

some load when used. That means that these 

products are made of plastics that are in the 

glass phase at room temperature. 

 

Although it may take a long time, rotation of 

the Kuhn segments is still possible: we only 

have to wait long enough. Suppose that on 

average it takes 1 million seconds for a Kuhn 

segment to rotate. If we would now apply a 

force on the plastic for a time longer than 1 

million seconds, then the Kuhn segments do 

have sufficient time to rotate and the plastic 

will start to deform. This deformation of 

course happens very slowly and it is called creep of the polymer. 

 

The resulting elasticity-modulus or Yong’s 

modulus will be high because it is mainly 

determined by bending of chain segments. 

This is illustrated in Figure 23 that shows the 

storage modulus, the loss modules and the 

ratio loss – storage modulus (tg()) for PVC as 

measured by means of DMA. 

 

Upon increasing the temperature, the 

thermal energy becomes large enough to 

make rotations of the chain ends and side 

groups possible on a human time scale (1 s). 

For PVC this happens at a temperature of 

about -50 C. However, the polymer molecules 

are so close together that nearby macromolecules strongly hinder the segmental rotation. There is 

not enough free volume present in between the macromolecules. Only at the chain ends enough free 

volume is present to enable the end segments of the macromolecules to rotate. This is shown by the 

 

Figure 22: Plastic pipes made from PVC in the glass phase. 

 
Figure 23: Storage modulus (E’), loss modulus (E”) and tg() as 
measured by dynamic mechanical analysis. 
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rather weak peak at -50 C in the loss modulus and the tg() curve in Figure 7. The macromolecules 

are still immobile in this region because the major part of the chain segments is not able to rotate. 

 

5.1.1 Glass transition temperature 

By further increasing of the temperature the 

thermal energy becomes high enough to 

create locally some free volume around the 

chain segments. This will allow the chain 

segments of the macromolecules to start 

rotating more quickly. At the glass transition 

temperature enough thermal energy is 

available for all chain segments to rotate 

within a time of about 1 s. The 

macromolecules change into flexible chains. 

The stiffness of the polymer now reduces 

strongly (about 100 to 1000 times). For PVC 

this happens at a temperature of about 85 C 

as shown in Figure 23. For a material like 

HDPE this happens at a temperature of -130 

C. 

 

5.2 RUBBER PHASE 
With increasing temperatures the rotation time of the Kuhn segments will decrease. The 

temperature at which the rotation time is 1 second is the glass-rubber transition temperature. Above 

this temperature the rotation time is less than 1 second. In this condition the polymer molecules will 

easily deform under an applied load due to the rotating Kuhn segments. The polymer is now in the 

rubber phase. It is a flexible material. 

 

Plastics that are in the rubber phase at room 

temperature is used for flexible products like 

automotive tires and rubber bands. 

 

In the rubber phase reptation of the 

macromolecules can be neglected. It would 

simply take a too long time before that 

happens. For reptation over some distance 

many millions of Kuhn segment rotations are 

needed. 

 

The degree of freedom of the macromolecules has increased, which is reflected in a suddenly higher 

thermal expansion and a higher heat capacity of the polymer above the glass transition temperature. 

The average free volume around the macromolecule increases now, thus reducing the activation 

energy needed for segmental rotation. 

 

The rubber phase is defined as the region where the rotation time is less than 1 s but reptation is still 

difficult. Reptation times are much higher than 1 s. The material behaves like an elastic solid with a 

low stiffness. In the rubber phase, large deformations of the polymer are possible, caused by 

alignment of the rotating Kuhn segments. 

 
Figure 24: Diagram of specific volume versus temperature. At 
the glass transition temperature Tg the expansion coefficient 
suddenly increases. 

 
Figure 25: Elastic band made from a polymer in the rubber 
phase. 
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Upon increasing temperatures the chain segments continue rotating at increasing speeds. More and 

more free volume is created around the macromolecules due to the thermal expansion. It becomes 

possible for the macromolecules to slide forwards and backwards along their own axis (like a snake 

wriggling through a pile of other snakes). Due to reptation macromolecules can move into other 

positions. This makes the polymer to behave as a kind of a fluid with strong viscoelastic properties.  

 

The reptation of the macromolecules into new positions enables the polymer to relax imposed 

stresses. The time needed to significantly reduce a stress (the rubber relaxation time) of the rubber 

is the same as the reptation time of the polymer. 

 

We define the onset of the melt phase as the temperature at which stresses relax on a human time 

scale. The means a reptation time in the order of 1 s. 

 

5.3 MELT PHASE 
Since the rotation time of the Kuhn segments keeps on decreasing with increasing temperature the 

time for the molecules to reptate into a new position will decrease. At temperatures where the 

reptation time is 1 second or less the macromolecules easily move into new positions. The polymer 

will forget its shape after a short time. It has changed from a rubber into a liquid. 

 

The melt phase is typically used to give the polymer its final shape for use. For example, pipes are 

made by extrusion of polymer melt, plastic toys are made by injection moulding and bottles are 

made by blow moulding the melt. 

 

The properties of the polymer now have changed from that of a rubber into that of a melt. The melt 

phase is defined as the temperature region where the reptation time is less than 1 s. The 

macromolecules can reptate on a human time scale, causing stresses to be released in less than a 

second. The stress relaxation times have reduced to less than a second.  

 

Polymers normally have a high viscosity in the melt phase: in the order of magnitude of 104 Pas or 

more. Some elastic properties are still present; they are reflected for example in die swell during 

processing. 

 

5.4 GLASS-RUBBER AND RUBBER-MELT TRANSITION TEMPERATURE 
In Table 2 the chain segment rotation times and the polymer reptation times have been summarized. 

At the glass – rubber transition temperature the rotation time is 1 second and at the rubber – melt 

transition temperature the reptation time is 1 second. 

 

Table 2: Rotation and reptation times in the different phases of the polymer 

 Rotation time Reptation time 

Glass phase > 1 s >> 1 s 

Glass – rubber transition temperature 1 s  

Rubber phase < 1 s > 1 s 

Rubber – melt transition temperature  1 s 

Melt phase << 1 s < 1 s 
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5.5 AMORPHOUS AND CRYSTALLINE POLYMERS 
Due to their nature polymer molecules like to have a random shape. Combined with other 

macromolecules they form a disordered structure (amorphous). However, some polymers are able to 

arrange their macromolecules with some regularity with neighbouring macromolecules. The regular 

structures now formed are called crystalline regions. 

 

In a crystalline region the macromolecules are more closely packed than in an amorphous region. The 

free volume is less and this causes the macromolecules to be strongly hindered in their movements. 

They are less mobile in a crystalline region. When macromolecules are arranged in a crystalline 

structure they form a rigid and strong plastic, even when the amorphous part of the polymer would 

be in the rubber phase. 

 

Polymers are usually classified into 

amorphous polymers and crystalline 

polymers. Amorphous polymers have a 

fraction of crystalline material that is usually 

less than 10 %. Crystalline polymers have a 

crystalline fraction that is larger than 50 %. 

Typical examples of amorphous polymers are 

polycarbonate (PC), polystyrene (PS) and 

polyvinylchloride (PVC). Typical examples of 

crystalline polymers are polyethylene (PE) and 

polyethylene terephthalate (PET). 

 

At a high enough temperature the crystalline 

region will melt. This is the crystalline melting 

point. The crystalline melting point is always 

higher than the glass-rubber transition temperature. 

 

In case of a crystalline polymer like HDPE a crystalline phase will be present both in the glass phase 

and in the rubber phase. In the glass phase the stiffness of the amorphous part will be so high that 

the influence of the crystalline phase can be neglected. This is not the case in the rubber phase 

however. 

 

 
Figure 27: Glass transition temperature and crystalline 
melting point of several polymers. 

 
Figure 28: The crystalline phase (d) effectively increases the 
stiffness of the polymer. 

 
Figure 26: Regular crystalline regions in an amorphous matrix. 
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In all polymers the crystalline melting temperature is higher than the glass transition temperature. 

This is indicated in Figure 27. That implies that in a crystalline polymer the crystalline phase will 

always modify the properties of the rubber phase. 

 

The crystalline regions (spherulites) will slow 

down the rotation of the polymer segments, 

at least in or near by the lamellae. This will 

increase the stiffness of the rubber phase 

very much, as indicated in Figure 28. Large 

deformations of the polymer are only 

possible by ripping the polymer chains out of 

the crystalline regions (see Figure 29). 

 

In crystalline polymers the level of crystals 

formed below the melting point is so high 

that chain reptation becomes directly 

seriously hindered. Below the crystalline 

melting point reptation suffers from an extra energy barrier to pass: the melting energy. The 

reptation frequency will suddenly drop several orders of magnitude, causing the reptation to cease. 

The rubber phase is now extended from the glass transition temperature up to the crystalline melting 

temperature. 

 

Table 3: Rotation and reptation times in the amorphous and crystalline phases of the polymer 

 Crystalline material? Rotation time Reptation time 

Glass phase Amorphous region > 1 s >> 1 s 

Glass phase Crystalline region   
Rubber phase Amorphous region < 1 s >> 1 s 

Rubber phase Crystalline region >> 1 s  
Melt phase  << 1 s < 1 s 

 

5.6 CRYSTALLINE TO FLUID PHASE TRANSITION IN SHORT 
In a crystalline material the atoms or molecules have 

arranged themselves in a very regular way. They 

attract each other by means of their intermolecular 

forces. Each molecule is “captured” by the other 

neighbouring molecules. This is called the crystalline 

phase. 

 

Next to the regular crystalline structure molecules 

can also have a disordered structure in which they 

can move around. This is called the fluid phase. In 

the fluid phase the molecules have an increased 

thermal energy due to the increased disorder 

(entropy S) which gives them more degrees of 

freedom. Due to the increased disorder, each molecule occupies more volume and therefore the 

density of the fluid will be less than that of the crystal.  

 

 
Figure 29: Deformation of a crystalline polymer. The polymer 
chains are ripped out of the crystals. 

 
Figure 30: Volume temperature diagram of a 

crystalline material. 
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Figure 30 shows a schematic diagram of the specific volume versus the temperature of a crystalline 

material. Below the melting point Tm the volume increases due to thermal expansion with 

temperature up to the melting point. At the melting point the phase changes from crystalline to fluid 

and the volume suddenly increases. Above the melting point the thermal expansion has increased 

due to the increased disorder of the material. 

 

To free one of the molecules from the crystal structure into the fluid a certain amount of energy will 

be needed. This is the heat of melting (U). And when a molecule moves from the fluid back into the 

crystal this heat of melting will be released again.  

 

There is always an exchange of molecules between the crystalline phase and the fluid phase. At the 

melting temperature (Tm) the number of molecules that leave the crystalline phase equal the number 

of molecules that leave the fluid phase. Below the melting temperature more molecules enter the 

crystalline phase than those that leave the crystalline phase. Everything becomes solid. Above the 

melting temperature there are more molecules that leave the crystalline phase than those that enter 

the crystalline phase. Everything becomes fluid. 

 

The melting temperature depends on the heat of melting (U) and the change of thermal energy of 

the molecules when the leave or enter the crystalline phase. This change of thermal energy is simply 

the change of disorder (configurational entropy Sc) times the temperature (T). At the melting 

temperature (Tm) the heat of melting equals the change of thermal energy of the molecule. It then 

follows that: 

 
Equation 21 

cm STU =  or 
c

m
S

U
T




=  
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6 STRESS AND DEFORMATION 
6.1 SMALL AND LARGE DEFORMATIONS 
When a force is applied to a body then that body will be deformed. This is true for any material, 

including polymers. Figure 31 shows a rod that is deformed by a compression force (left) and by a 

tensile force (right). The original not deformed rod is shown in the middle. 

 

We define the deformation or strain () as the 

change of length of the body (l) divided by 

the original length of the body (l0): 

 
Equation 22 

0l

l
=  

 

Example: When a body with a length of 100 

mm is stretched by 2 mm then the strain is 2 / 

100 = 0.02. 

 

Instead of the force (F) it is common to use 

stress instead (), which is the force per unit area (A) in the body: 

 
Equation 23 

A

F
=  

 

Example: A force of 100 N on a body with a surface of 1000 cm2 (= 0.1 m2 ) will cause a stress of 100 / 

0.1 = 1000 N/m2, which is the same as 1000 Pa. 

 

In case of a small deformation the stress is proportional to the deformation. This fact is known as 

Hooke’s law. It says that the stress () is equal to the deformation () times the  Young’s modulus (Y): 

 
Equation 24 

 Y=  

 

The Young’s modulus is a material property. Example: Steel has an modulus of 210,000 MPa (1 MPa = 

106 N/m2). In order to create a strain of 0.02 in the bar a stress equal to 210,000 x 0.01 = 2,100 MPa 

is needed. 

 

With this set of equations the stresses and strains in many situations are well described as long as 

the strain is small: not more than something like 0.03. When a body is deformed more than a few 

percent than Hooke’s law is not valid anymore. 

 

Most polymers can be deformed much more than a few percent, especially when they are in the 

rubber phase. Think of a rubber band that can be stretched five to ten times before it breaks. 

 
Figure 31: A body subjected to a force will be deformed 
(commons.wikimedia.org). 
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Therefore, we need another way to describe the relation between stress and deformation in 

polymers. It is common to specify the deformation of the polymer by the stretch ratio (), which is 

the new length (l) divided by the original length (l0): 

 
Equation 25 

0l

l
=  

 

Example: A body has an original length of 10 cm. If the body is stretched to a length of 15 cm then 

the stretch ratio is 15 / 10 = 1.5. If that same body would have been compressed to 5 cm then the 

stretch ratio is 5 / 10 = 0.5. 

 

In case of large deformations, where Hooke’s law is not valid, the relation between stress and stretch 

ratio is as follows: 

 
Equation 26 









−=




12G  

 

In this equation, G is the shear modulus of the body. Like the Young’s modulus it is a material 

property. Usually the shear modulus is about 1/3 of the Young’s modulus (G = Y/3). 

 

Example: Rubber has a shear modulus of about 10 MPa. If the rubber is stretched 2 times then the 

stress in the rubber will be 10 x (22 – ½) = 35 MPa. In case of undeformed rubber the stretch ratio is 1 

and the stress will be 10 x (1 – 1) = 0 MPa. 

 

6.2 NEO-HOOKEAN MODEL FOR LARGE DEFORMATIONS 
For describing the behaviour of a rubber we will use the “Neo-Hookean model”. This model is an 

extension of Hooke's law for the case of large deformations. The model of neo-Hookean solid is 

usable for plastics and rubber-like substances. Since deformations (strains) and resulting true 

stresses are dependent on the direction, tensor notation will be used in this chapter. 

 

The stress tensor  is related to the shear modulus G of the polymer, the deformation gradient 

tensor F and the pressure p as follows: 

 
Equation 27 

1T
FFFFσ

−−= pG (or written in index notation: 
=

−

=

−=
3

1

1
3

1 k

kjik

k

jkikij FFpFFG ) 

 is the stress tensor that describes the normal stresses and the shear stresses in the polymer: 
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Equation 28 

















=

333231

232221

131211







σ with jiij  =  

 

The indices 1, 2 and 3 refer to the axis in a 3-dimensional space. For example, 1 could be the x-axis, 2 

the y-axis and 3 the z-axis. The first index defines the plane on which the force is acting: 1 means the 

plane perpendicular to the x-axis, 2 the plane perpendicular to the y-axis and 3 the plane 

perpendicular to the z-axis. The second index defines the direction of the force: 1 in the direction of 

the x-axis, etc. 11, 22 and 33 are the normal stresses; 12, 13 and 23 are the shear stresses. 

 

The deformation gradient tensor F describes all shear and strain deformations in the rubber material. 

It is the ratio between the deformed state (x) and the undeformed state (X): 

 
Equation 29 

j

i
ij

X

x
F




=  

 

In the case of a simple shear  = 12 on plane 1 in 

axis direction 2 F becomes: 


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In the case of uniaxial extension  = 11 = Lnew / Lold 

on plane 1 in axis direction 1 F becomes: 
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FT is the transposed deformation tensor. This tensor is simply generated by exchanging the rows for 

the columns (Fij  Fji). 

 

In case of a simple shear: 


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In case of uniaxial extension: 
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F-1 is the inverse of the deformation tensor. By definition: FF-1 = I, where I is the unit tensor with Iij = 1 

for i=j and Iij = 0 for ij. 
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In case of a simple shear: 
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In case of uniaxial extension: 
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6.3 EXAMPLE: SIMPLE SHEAR IN RUBBER 
Let us consider the case that a rubber is only sheared on plane 1 in the axis direction 2 by an amount 

of . Now Equation 27 becomes: 

 
Equation 30 
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Since the strain tensor is symmetric (ij = ji) it follows that p = G and we now find for the stress 

tensor: 

 
Equation 31 
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12 is the shear stress . It increases linearly with the shear deformation . This is just like the well-

known relation for shear strain and shear stress in an elastic solid according to Hooke’s law for small 

deformations. 

 

11 is the normal stress that is induced in the rubber due to the shear deformation. It is also often 

referred to as the first normal stress difference (11 - 22). The normal stress increases quadratically 

with the shear deformation . 

 

6.4 EXAMPLE: UNIAXIAL EXTENSIONAL STRESS 
Let us now consider a rubber of which plane 1 is stretched into the 1-direction. The stretch ratio  = 

Lnew / Lold. Now Equation 27 becomes: 
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Equation 32 
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Under uniaxial extension the stress in the 11-direction is  and the stress in all other directions is 0. It 

then follows that p = G/ and we find for the stress tensor: 

 
Equation 33 
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The stretch ratio  can also be expressed in strain  as , which results in: 

 
Equation 34 

( ) −−= eeG 2
 

 

For small values of the strain ( << 1) it then follows that  = 3G and for incompressible materials 

the Young’s modulus Y = 3G. So for small deformations we find Hooke’s law again: 

 
Equation 35 

 Y=  (for  << 1) 

 

 

 e=
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7 INFLUENCE OF STRESS ON ROTATION AND  REPTATION TIME 
As discussed before polymer molecules have two ways of moving: the chain segments (Kuhn 

segments) can rotate and the entire molecule can slide along its own axis (reptate).  

 

We have learned that both the Kuhn segment rotation time and the reptation time are strongly 

temperature dependant. Temperature is in fact the same as motion of the atoms and molecules. 

Increasing temperatures thus give increasing mobility of atoms and molecules and thus shorter 

relaxation times. 

 

A very important phenomenon that we have so far not discussed is the fact that both the rotation 

time and the reptation time are also strongly dependant on the stress present. 

 

7.1 INFLUENCE OF STRESS ON KUHN SEGMENT ROTATION TIME 
The rotations of the Kuhn segments will normally be forwards and backwards in a random way in the 

absence of a stress. When a stress is present however, rotation in one direction may increase the 

stress and rotation in the other direction may reduce the stress. 

 

Rotations that reduce the stress are favoured: the stress helps the Kuhn segment to rotate. The 

rotations that reduce the stress will therefor speed up. The time needed for rotations that reduce the 

stress will strongly decrease. This causes the glass stress relaxation time to decrease strongly too. 

 

For rotations that increase the stress the situation is opposite: the stress will counteract these 

rotations. The rotations that increase the stress will therefor slow down. The time needed for such 

rotations will increase strongly. Their contribution to the glass stress relaxation time will diminish. On 

average, any stress will cause the glass stress relaxation time to reduce strongly.  

 

 
Figure 32: Rotations that reduce the stress will be 
favoured. 

 
Figure 33: The average relaxation time strongly reduces 
with increasing stress. 

 

As an example, a sketch of its influence is shown in Figure 33. The horizontal axis shows the stress 

and the vertical axis shows the relaxation time. When the stress is zero the relaxation time is 

maximal at a level (in this example) of about 1000 seconds. Positive tensile stresses or negative 

compression stresses will strongly reduce the relaxation time. At a stress level of about 20 MPa the 

relaxation time is already 1000 times less. 
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7.1.1 Equations for the glass stress relaxation time 

When the polymer is deformed then elastic energy is stored in the macromolecules. The 

macromolecules will try to reduce the stored energy by means of rotation of their chain segments. In 

this way, the stored elastic energy will be lost into energy needed for rotating the chain and is 

effectively dissipated into heat.  

 

The rotations can happen into any direction. Rotations that cause a deformation opposite to the 

imposed deformation will experience an increased energy barrier; their rotation time will be 

increased. Rotations that cause a deformation in the direction of the imposed deformation will 

experience a reduced energy barrier; their rotation time will be reduced. The energy per blob that is 

dissipated by the plastic deformation is uplas. This energy is used to help a Kuhn pair rotate in each 

blob. The energy barrier to overcome for this rotation will be changed by the same amount. The 

rotation time then becomes: 

 
Equation 36 
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Since the Kuhn pair rotations cause plastic deformations in random directions they will experience 

variations in the energy barrier between -uplas and +uplas. Some rotation times will increase; others 

will reduce. The effective rotation time will be the inverse of the average number of rotations per 

second: 
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The energy that is consumed during plastic deformation of the polymer is used to make a Kuhn pair 

rotate in all blobs of the polymer. During plastic deformation the stress gla remains more or less 

constant. Therefore, the energy consumed during plastic deformation for each blob will be: 

 
Equation 38 
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The rotation time then becomes: 

 
Equation 39 
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From Equation 39 we can conclude that the relaxation time with which the glass stress reduces is 

strongly influenced by temperature and stress. Increasing stresses and increasing temperatures 

cause the relaxation time for rotation to reduce.  

 

Vrot is defined as the activation volume for rotation and is given by: 

 
Equation 40 

c

rotV



=  

 

In the equation above c is the entanglement density of the polymer. It is directly related to the 

number of entangled Kuhn segments Ne, the mass of a Kuhn segment mK and the density of the 

polymer : 

 
Equation 41 

eK

c
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The average number of Kuhn segments present in one blob (the number of entangled Kuhn 

segments) is Ne. Since the size of one blob is bNe and the change of length due to Kuhn pair rotation 

is 2b the induced strain in the blob  will be: 

 
Equation 42 
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We now find for the activation volume for Kuhn pair rotation: 

 
Equation 43 
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7.2 INFLUENCE OF STRESS ON REPTATION TIME 
In the rubber phase the Kuhn segments can freely rotate thus giving the macromolecules a large 

flexibility. They are easy to deform. Any deformation imposed to the polymer induces a rubber stress 

in the material. 

 

In the rubber phase reptation of the macromolecules is possible. Without stress they will move along 

their own axis randomly forwards and backwards if the stress is zero. This will change when stress is 

present however. 

 

The deformation of the polymer also has deformed the individual macromolecules. Their normal 

spherical shape has been changed in, for example, an ellipsoid. If now the macromolecules reptate a 

step into a new position, then the average deformation of the molecule changes: 
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1. The change may result in a reduction of the deformation of the macromolecule. Due to this the 

stress locally in the macromolecule will reduce. 

2. The change may result in an increase of the deformation of the macromolecule. Due to this the 

stress locally in the macromolecule will increase. 

 

Reptation in a direction that reduces the stress is favoured because then the stress “helps” the 

molecule to move into that position. It is as if it moves with the wind in the back. Therefore, the time 

for the macromolecule to reptate into this direction will reduce considerably. 

 

In the same way the time to reptate into a 

position that increases the stress will be 

counteracted. Now it is like the molecule is 

moving against the wind. The time needed to 

move into those positions will strongly 

increase. These reptations will not contribute 

anymore to the total relaxation because they 

stop to happen at higher stresses. 

 

Thus, the average relaxation time of all 

deformed polymer molecules will strongly 

decrease while under stress. The stress simply 

helps the molecules to move into new 

positions where their deformation becomes 

zero. The nett result is a rubber relaxation 

time that is maximal at zero stress and which 

reduces strongly with either compression or 

tensile stresses. Just like the relaxation time of the glass stress does. 

 

The Kuhn elements inside a blob are supposed to be able to rotate freely. Restrictions for reptation 

are caused by the entanglements in between the blobs. For reptation it is necessary that a Kuhn 

element passes the entanglement. We assume that this can only happen during a rotation of that 

Kuhn element. The elastic energy that is stored in the other Kuhn elements in the blob will help the 

Kuhn element at the blob to pass. 

 

7.2.1 Equations for the rubber stress relaxation time 

The reptation time is directly related to the rotation time and the size of the macromolecule as 

shown in chapter 4. That implies that the stress will influence the reptation time in the same way as 

the rotation time: 

 
Equation 44 
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Since rotation of the Kuhn segments is the driving force for reptation the activation energy for 

reptation is the same as the activation energy for rotation. The activation volume for reptation will 

be larger however than the activation energy for rotation. This is because the stored elastic energy of 

all Kuhn elements in a blob will help the Kuhn element at the blob to pass. It means that: 

 
Figure 34: Reptation causes the deformation of the 
macromolecule to be reduced. 
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Equation 45 

rep e rotV N V=   

 

The only important stress in the rubber and melt phase will be the rubber stress rub. The glass stress 

gla will have relaxed to zero. We can then write the equation for the reptation time also as: 

 
Equation 46 

3.5
,0 ,0exp sinh exp sinh

rep rub rep rubrot rote rot rub e rot rub
rep K rot rep

V VE EN V N V
N

kT kT kT kTkT kT

  
  

     
= =      

      
 

 

7.3 IMPLICATIONS 
We have seen that the time with which stress disappears in time (relaxation) is strongly dependant 

on the actual level of the stress. This has certain implications for the behaviour of the polymers when 

stress is applied. We will shortly discuss three examples: 

 

1. Multiple relaxation times. A polymer bar is suddenly deformed and this deformation is kept 

constant. Initially the stress is high. Due to the high stress the relaxation time will be short. In 

time the stress reduces and this causes the relaxation time to increase. This continues until the 

stress is close to zero after a long time and the relaxation time will be down to the level dictated 

by the temperature. This means that initially the stress will reduce rather quickly in time but this 

speed of reduction reduces after longer times. In fact, a spectrum of relaxation times rule this 

process. 

2. Yield stress. A polymer in the glass phase has a certain yield stress. Below the yield stress the 

deformation of the polymer is relatively small and recoverable. At the yield stress the polymer 

will suddenly start to deform plastically until it breaks. The reached deformation at break can be 

up to 500 % or more. This behaviour is due to the influence of the stress on the relaxation time. 

At low stress the relaxation time for Kuhn segment rotation in the glass phase will be very high: 

in the order of a couple of years or more. When the stress is increased the relaxation time for 

rotation will reduce strongly. Eventually a stress will be reached where the relaxation time for 

Kuhn segment rotation is in the order of a few seconds. At that moment the Kuhn segments will 

start to rotate quickly and the polymer will deform enormously with the applied stress. This is 

the yield stress. 

3. Viscosity. It is a well-known phenomenon that the viscosity of a polymer reduces with the shear 

rate. This is caused by the higher shear stress at higher shear rates. The increased stress reduces 

the rubber relaxation time (reptation time) which will reduce the viscosity. 
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8 STRESS RELAXATION 
In chapter 6 we have learned how a deformation of the polymer causes stress in the polymer. We 

have also learned in chapter 4 that the polymer molecules are mobile: the Kuhn segments of the 

macromolecule rotate and the entire molecules reptate. Due to this mobility any stress will reduce 

with time. This is called stress relaxation. 

 

8.1 STRESS RELAXATION IN THE GLASS PHASE 
In the glass phase the polymer molecules are 

not very mobile. Rotation of the Kuhn 

segments is possible, but at a very low 

frequency. At the glass transition temperature 

the rotation time is 1 second. At lower 

temperatures one single rotation may need a 

time as much as a million seconds or more. 

 

Yet it is these rotations that cause the stress 

to disappear. Let us visualize the polymer 

molecule with its Kuhn segments as a folding 

ruler. The rotating parts of the ruler are the Kuhn segments. 

 

Now let us suppose that the hinges between the rotating 

parts of the folding ruler are rusty; it is difficult to rotate 

them. If we would deform the ruler a little bit then the parts 

of the folding ruler would first bend a little, as shown in 

Figure 36 at the left-hand side. 

 

However, after some time one or more of the hinges will 

give way and some parts of the folding ruler will rotate. This 

will effectively reduce the bending of the parts and will thus 

reduce the stress. This is shown in the picture above at the 

right-hand side. The stress is relaxing due to the rotation of 

the parts. 

 

In the same way the stress in a polymer in the glass phase 

(the glass stress) will relax due to the rotation of the Kuhn 

segments. Once a sufficient amount of Kuhn segments has 

rotated all bending will have disappeared. The stress has then reduced considerably. The glass stress, 

due to bending of the chain segments, has been replaced by the rubber stress which is due to the 

rotation of the Kuhn segments. The relaxation time of stresses in the glass phase is identical with the 

Kuhn segment rotation time. 

 
Equation 47 

rotgla  =  

 

The typical time for this stress reduction (the glass relaxation time) is equal to the time that the 

Kuhn segments need for making one rotation. At the glass transition temperature, where the Kuhn 

 
Figure 35: A macromolecule in the glass phase can be 
visualized as a folding ruler. 

 
Figure 36: A deformation causes the Kuhn 
elements to bend. This creates the glass 
stress. Due to rotation the bending 
disappears and the stress reduces. 
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segments need 1 second for a rotation, the relaxation time is always 1 second. At a temperature far 

below the glass transition temperature the relaxation time may increase to many millions of seconds. 

 

The change of the glass stress with time due to relaxation can be mathematically described by means 

of a differential equation. If there is no other influence on the glass stress than the glass relaxation 

process then the change of stress with time looks as follows: 

[change of glass stress per unit of time] = – [glass stress] / [glass relaxation time] 

 

The differential equation above describes a situation where glass stress can only disappear due to 

relaxation. The level of the stress will gradually reduce to zero with time. This is a very special 

situation. More common is that a polymer is continuously deformed. In such a case the “change of 

the glass stress per unit time” consists of two parts: 

1. An increase of the stress due to the deformation 

2. A decrease of the stress due to the relaxation: “-glass stress / glass relaxation time” 

 

The differential equation now looks like: 

[change of glass stress per unit of time] = + [change of glass stress due to deformation per unit of 

time] – [glass stress] / [glass relaxation time] 

 

In mathematical representation: 

 
Equation 48 
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The term dgla/dben relates the change in glass stress to the change in deformation by bendig. In 

case of small strain during uniaxial elongation it is the glass Young’s modulus (Ygla). In case of shear it 

is the glass shear modulus (Ggla = Ygla/3). 

 

In some cases the modulus dgla/dben is constant (independent of the strain). That happens, for 

example when the strains are small. Then the glass stress is directly related to the deformation by 

bending: 

 
Equation 49 
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By combining Equation 48 and Equation 49 we find a simple differential equation for the momentary 

deformation by rotation: 

 
Equation 50 
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It is important to realize that the initial deformation by bending is converted into deformation by 

rotation. The total deformation remains constant: 

 
Equation 51 

benrotben d −=→=+ rotd constant  

 

Due to the Kuhn segment rotation the initial glass stress is converted into a much lower rubber stress. 

The total deformation does not change. 

 

8.2 STRESS RELAXATION IN THE RUBBER AND MELT PHASE 
In the rubber phase the time that the Kuhn 

segments need to rotate is much less than 1 

second. That implies that any glass stress will 

disappear almost immediately to zero. Glass 

stress is not relevant in the rubber phase. 

 

The quickly rotating Kuhn segments will 

deform the macromolecules in a random 

shape. It is called the random coil 

configuration and that is the natural shape of 

the macromolecules. If we would now apply a 

deformation to the polymer then the random 

coil configuration is disturbed. The shape of 

the macromolecules changes from a sphere into an ellipsoid. The macromolecules will react on this 

deformation by creating a stress that tends to bring their shape back to that of a sphere. This stress is 

called the rubber stress. 

 

We can visualize this rubber stress by means of a rotating jumping rope. Due to the rotating rope the 

ends of the rope are pulled together. And the faster that the rope rotates the more force on the rope 

ends is created. In the same way the rubber stress increases with temperature! 

 

In the rubber phase the macro molecules can slowly change their position due to reptation. This 

gives the macromolecules the possibility to reshape themselves into their wished random coil 

configuration. Thus, the rubber stress will disappear in time. The time scale on which this happens is 

simply the reptation time. Therefor the rubber relaxation time is equal to the reptation time. 

 
Equation 52 

reprub  =  

 

The change of the rubber stress with time due to relaxation can be mathematically described by 

means of a differential equation that is very similar with the one for the glass stress. If there is no 

other influence on the rubber stress than the rubber relaxation process then the change of stress 

with time looks as follows: 

[change of rubber stress per unit of time] = – [rubber stress] / [rubber relaxation time] 

 

 
Figure 37: A deformation in the rubber or melt phase reduces 
by reptation. 
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The differential equation above describes a situation where rubber stress can only disappear due to 

relaxation. The level of the stress will gradually reduce to zero with time. This is a very special 

situation. More common is that a polymer is continuously deformed. In such a case the “change of 

the rubber stress per unit time” consists of two parts: 

1. An increase of the stress due to the deformation 

2. A decrease of the stress due to the relaxation: “-rubber stress / rubber relaxation time” 

 

[change of rubber stress per unit of time] = + [change of rubber stress due to deformation per unit 

time] – [rubber stress] / [rubber relaxation time] 

 

In mathematical representation: 

 
Equation 53 
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The term dgla/dben relates the change in rubber stress to the change in deformation by rotation. In 

case of small strain during uniaxial elongation it is the rubber Young’s modulus (Ygla). In case of shear 

it is the rubber shear modulus (Ggla = Ygla/3). 

 

The term (dben/dgla)(gla/rot) is the change of the rubber deformation (drot/dt) due to the rotation 

of the Kuhn segments (glass stress relaxation). Deformation by bending is converted into 

deformation by rotation. 

 

In some cases the modulus drub/drot is constant (independent of the strain). That happens, for 

example when the strains are small. Then the rubber stress is directly related to the deformation by 

rotation: 

 
Equation 54 
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By combining Equation 53 and Equation 54 we find a simple differential equation for the momentary 

deformation by rotation: 

 
Equation 55 
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At a temperature more than 10 to 20 degrees above the glass transition temperature the rotation 

relaxation time is very short. It then follows that the glass stress and the change of glass stress with 

time are always close to zero and Equation 52 then gives: 
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Equation 56 
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Combining Equation 53 and Equation 56 results in a simplified differential equation for the rubber 

and melt phase: 

 
Equation 57 
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The polymer molecules are very flexible. Kuhn segment rotation is fast and the preferred 

conformation of the macromolecules is a random coil. Any deformation of the polymer in the rubber 

and melt phase will result in a deformation of the random coil. The stress connected to this 

deformation is the rubber stress. 

 

Stress relaxation is now controlled by reptation. Due to reptation the initially deformed 

macromolecule leaves its position and creates a new random coil conformation at a nearby site. The 

rubber stress will disappear due to this process. 

 

With increasing temperatures the reptation time reduces. At the rubber – melt transition 

temperature the reptation time is 1 second and the rubber relaxation time is 1 second too. Above 

this temperature the rubber stress will disappear so fast that it is not relevant anymore. The polymer 

is now in the melt phase. 

 

We will show later how the differential equation above can be used to calculate the viscosity of the 

polymer. 

 

8.3 TOTAL DEFORMATION AND TOTAL STRESS 
In the previous chapters we have discussed deformation by bending (ben) and glass stress (gla) in the 

glass phase and deformation by rotation (rot) of chain segments and rubber stress (rub) in the 

rubber phase. Both types of deformation and both types of stress always occur simultaneously. That 

means that the total deformation is the sum of deformation by bending and deformation by rotation 

and that the total stress is the sum of glass stress and rubber stress: 

 
Equation 58 
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8.4 SUMMARY 
It has been shown that the viscoelastic behaviour of the glass, rubber and melt phase can be 

described with two coupled differential equations, one for the glass stress due to  

bending of the chain segments (gla) and one for the rubber stress due to random rotation of the 

Kuhn segments (rub).  

 

Glass stress: 
Equation 59 
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Rubber stress:  
Equation 60 
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Total stress: 
Equation 61 

gla rub  = +   

 

Total deformation: 
Equation 62 

ben rot  = +   

 

In case that the moduli dgla/dben and drub/drot are independent of strain then Equation 59 and 

Equation 60 can also be represented as differential equations for the deformation by bending and 

the deformation by rotation: 
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Equation 64 

Deformation by rotation: 
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Relaxation of the glass stress is caused by rotation of the Kuhn segments. This action causes 

deformation by bending of the chain segments to be converted into deformation by rotation of the 

Kuhn segments. The rotation of the Kuhn segments causes the glass stress to reduce and the rubber 
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stress to increase. The relaxation time for this process is determined by the time that the Kuhn 

segments need to rotate (rot). At the glass transition temperature this relaxation time is 1 second. 

 

Relaxation of the rubber stress is caused by reptation of the polymer molecules into new positions. In 

this way the macromolecules will lose their deformation. Any stored elastic energy is converted into 

heat. This relaxation time is equal to the reptation time. At the rubber – melt transition temperature 

this relaxation time is 1 second. 
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9 YIELD STRESS (GLASS PHASE) 
9.1 DESCRIPTION 
In a tensile tester a specimen of the polymer to be tested is stretched until it breaks. The test is 

usually done at room temperature. During this test the deformation of the specimen and the force 

used for the extension are measured. The speed of the deformation (or strain rate) is normally kept 

constant. An example of a stress-strain diagram thus obtained from PVC is shown in the figure. The 

actual stress in the specimen is calculated by dividing the measured force by the surface of the 

specimen. 

 

At the start of the test, when the deformation is still small, the stress first rises fast until a maximum 

has been reached. This maximum is called the yield stress. On further deformation, the measured 

stress reduces some 10 to 20 % and then rises again. 

 

 

The yield stress gives an indication of the strength of the polymer. As long as the stress is below the 

yield stress then the polymer behaves like an elastic solid. Close to the yield stress however the 

polymer starts to deform plastically. 

 

The tensile test can be done at different strain rates of the specimen. It is commonly observed that 

the yield stress increases logarithmically with the strain rate, as shown in Figure 40. 

 

 
Figure 38: Tensile test equipment. 

 
Figure 39: Nominal stress of PVC versus stretch ratio λ. 

 
Figure 40: Relation yield stress and strain rate. 
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9.2 WHAT MAKES A POLYMER YIELD? 
In the glass phase the Kuhn segment rotation 

time is very long. When a small stress is 

applied the polymer chains can only bend a 

little. This gives the polymer a stiff behaviour. 

 

However, things change when the stress 

becomes high enough. We have seen in 

chapter 7 that the stress strongly reduces the 

rotation time of the Kuhn segments. When 

the stress has reached the yield stress the 

rotation time has reduced to a few seconds. 

That is low enough to make the plastic deform 

on a human time scale. It now behaves 

rubbery. 

 

9.3 HOW TO CALCULATE THE YIELD STRESS FROM THE DIFFERENTIAL EQUATION 
In chapter 8 we have shown the general outline of the differential equation for the glass phase: 

[change of glass stress per unit of time] = + [change of glass stress due to deformation per unit of 

time] – [glass stress] / [glass relaxation time] 

 

This differential equation can be used for the calculation of the yield stress from the material 

properties. At the moment of yield the stress does not change anymore. It is constant and equal to 

the yield stress. That means that the change of glass stress per unit of time is zero. Now the 

differential equation looks as follows: 

0 = + [change of glass stress due to deformation per unit of time] – [yield stress] / [glass relaxation 

time] 

 

In case of small deformations, which is the case before yielding, the stress is proportional to the 

deformation. The proportionality factor is the Young’s modulus: 

[glass stress] = [Young’s modulus] * [deformation] 

 

It then follows that the change of glass stress per unit of time is equal to the Young’s modulus times 

the deformation speed: 

 [change of glass stress due to deformation per unit of time] = [Young’s modulus] * [deformation 

speed] 

 

We can rewrite this equation to determine the glass stress under those particular circumstances: 

[yield stress]  = [Young’s modulus] * [glass relaxation time] * [deformation speed] 

 

The yield stress is now found by applying the actual material properties into the equation above. 

 

9.4 MATHEMATICAL DERIVATION OF THE YIELD STRESS 
The viscoelastic relations are: 
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Figure 41: Near the yield stress the segment rotation time is 1 
second. 
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gla rub  = +   

ben rot  = +   

 

 

Boundary conditions: 

• The tensile test is usually done with a polymer in the glass phase. The rubber stress is much 

smaller than the glass stress and can be neglected: 

gla =  

• For the description of the viscoelastic behaviour we will therefor use the viscoelastic relation for 

the glass stress only: 

rot

gla

ben

glagla

dt

d

d

d

dt

d


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


−=   

• The tensile test is a typical example of uniaxial deformation. The relation between glass stress 

and deformation is therefore described by Equation 34: 

( ) ( )( )benbengla G  −−= exp2exp  

• The material yields at relatively low strains (0.1 to 0.2) and that results in a simple relation 

between stress and strain: 

bengla G 3=
 

• At the moment of yield the stress (y) is constant and therefore its derivative with time is zero: 

0
glad

dt


=   

 

The viscoelastic equations now simplify to: 
Equation 65 
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d d
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Now combining Equation 65 with the equation for the relaxation time in the glass phase using gla = 

y results in the following equation for the yield stress: 

 
Equation 66 
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If the argument in the inverse hyperbolic sine function is much larger than 1 we get: 

 
Equation 67 

( ) ( ) ( )xxxx 2ln1lnsinh 21 ++=−
 for x >> 1 

 

And Equation 66 can be simplified to: 
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From Equation 68 we learn that the yield stress during the tensile test increases with the logarithm of 

the strain rate , which is commonly observed in practice. For PVC the yield stress has been 

calculated using Erot = 1.85 x 10 -19 J, Vrot = 1.5 x 10-27 m3, Ggla = 109 Pa, 0 = 10-13 s and d/dt = 1.67 x 

10-3 s-1. 

 

 
Figure 42: Yield stress of PVC as calculated with the aid of Equation 68 using Erot = 1.85 x 10 -19 J, Vrot = 1.5 x 10-27 m3, Ggla = 

109 Pa, 0 = 10-13 s and d/dt = 1.67 x 10-3 s-1. 
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10 VISCOSITY (MELT PHASE) 
10.1 DEFINITION OF VISCOSITY 
Consider a cube made from an elastic 

material, having ribs with length h. The cube 

is glued to a table. If we would apply a force 

to the top of the cube parallel to the surface 

of the table then the top of the cube will be 

displaced over a distance ∆x, as shown in 

Figure 43. This kind of deformation is called 

shear deformation. Its value is the 

deformation divided by the height ∆x/h. The 

force acting on the cube divided by the area 

of the cube (F/h2) is called the shear stress.  

 

The ratio between the shear stress and the shear deformation is called the shear modulus. It can be 

calculated from: 

[shear modulus] = [shear stress] / [shear deformation]   or  [shear stress] = [shear modulus] * [shear 

deformation] 

 

Now suppose that the cube is made from a fluid like water or molten polymer. If a shear stress would 

be applied to this cube, then the top of the cube would continuously move in the direction of the 

stress with a certain velocity as long as the force exists. This continuous deformation is called shear 

rate and it is defined as the velocity of the top v divided by the height h: v/h. 

 

The ratio between the shear stress and the shear rate is called the viscosity. It can be calculated 

from:  

[viscosity] = [shear stress] / [shear rate]  or  [shear stress] = [viscosity] * [shear rate] 

In mathematical form: 

 
Equation 69 

dt

d
 =  or 

dt

d
 =  

 

The viscosity is an important material property of a fluid. With the aid of the viscosity the shear stress 

can be calculated when the fluid is sheared. Eventually this gives us the possibility to calculate the 

required pressure to move a fluid through a channel. 

 

10.2 HOW TO CALCULATE THE VISCOSITY FROM THE DIFFERENTIAL EQUATION 
In chapter 8 we have shown the general outline of the differential equation for the rubber and melt 

phase: 

[change of rubber stress per unit of time] = + [change of rubber stress due to deformation per unit 

time] – [rubber stress] / [rubber relaxation time] 

 

This differential equation can be used for the calculation of the viscosity from the material 

properties. The rubber stress is the same as the shear stress. We assume that after some time of 

 
Figure 43: Cube deformed by a shear stress. 
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shearing the shear stress has become constant. We have a dynamic equilibrium. That means that the 

change of stress has become zero: 

0 = + [change of rubber stress due to deformation per unit time] – [shear stress] / [rubber relaxation 

time] 

 

The change of rubber stress per unit time is the shear modulus times the shear rate: 

[change of rubber stress due to deformation per unit time]= [shear modulus] * [shear rate]  

 

By combining these two equations we get: 

0 = [shear modulus] * [shear rate]] - [shear stress] / [relaxation time] 

 

This can be rewritten into: 

[shear stress] = [shear modulus] * [relaxation 

time] * [shear rate] 

 

Remember that the viscosity has been 

defined as: 

[viscosity] = [shear stress] / [shear rate]   

 

Which gives us the following result for the 

viscosity: 

[viscosity] = [shear modulus] * [relaxation 

time]   

 

By using a differential equation in a dynamic equilibrium, we have proven that the viscosity of a fluid 

is simply the shear modulus time the relaxation time. Since the relaxation time of a polymer strongly 

reduces with the applied stress it follows that the viscosity of a polymer will also decrease with 

increasing shear stress or shear rate. This is a commonly observed phenomenon with polymers as 

shown in Figure 44. 

 

10.3 MATHEMATICAL DERIVATION OF SHEAR STRESS AND VISCOSITY 
The viscoelastic relations are: 
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gla rub  = +   

ben rot  = +   

 

Boundary conditions: 

• The polymer is under a constant rate of deformation (d/dt) and the stresses do not change 

anymore: 

0
glad

dt


=   and 0rubd

dt


=   

 

 
Figure 44: The viscosity of a polymer reduces with increasing 
shear rate or shear stress. 
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The viscoelastic relation for the glass stress then becomes: 

 
Equation 70 
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From which follows: 

 
Equation 71 
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For the total stress created by the deformation rate we find: 

 
Equation 72 

gla rub
gla rub rot rep

ben rot

d dd d

d dt d dt

  
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 
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We consider the case that the deformation of the polymer is a shear deformation, usually denoted 

by : 

 
Equation 73 

gla gla benG =  , rub rub rotG =  and 
d d

dt dt

 
=   

 

By combining Equation 72 with Equation 73 we find for the relation between the stress and the strain 

rate: 

 
Equation 74 

( )gla rot rub rep

d
G G

dt


  = +  

 

The shear viscosity s of a polymer is defined as: 

 
Equation 75 

dt

d
s


 =  

 

It then follows for the shear viscosity of a polymer: 
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Equation 76 

s gla rot rub repG G  = +  

 

Shear viscosity is usually determined in the rubber phase. In that case the product Grubrep is much 

higher than Gglarot (Grub is 1000 times lower than Ggla but rep is 106 to 108 time higher than rot). 

Therefor the shear viscosity of a rubber is simply the product of the shear modulus and the rubber 

relaxation time: 

 
Equation 77 

s rub repG =  

 

 Equation 77 combined with the equation for the reptation relaxation time gives us: 

 
Equation 78 
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In Figure 45 the viscosity of PVC has been calculated with the aid of and Equation 78 with the 

physical constants of PVC. The viscosity data are logarithmically plotted versus the shear stress. Note 

that at higher stresses the viscosity s decrease approximately exponentially with the shear stress. 

For comparison, the viscosity has also been plotted versus the shear rate in the “old fashioned” way 

in Figure 46. Note that especially at the higher shear rates the viscosities of the different 

temperatures seem to coincide. 

 

 
Figure 45: Shear viscosity of PVC K67 versus shear stress. 

 
Figure 46: Shear viscosity of PVC K67 versus shear rate. 
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11 BEHAVIOUR OF POLYMERS UNDER CYCLIC LOAD 
11.1 TEST UNDER CYCLIC LOAD 
A common way to investigate the behaviour 

of polymers is to subject them to a small 

cyclic deformation while measuring the 

resulting stress. With a cyclic deformation we 

mean a kind of push and pull action that is 

done (for example) once every second. A 

graphical representation of such a cyclic 

deformation is shown in Figure 47. The shape 

of the deformation with time is called 

sinusoidal. 

 

The cyclic deformation test can be done at 

varying temperatures and then it gives us 

information about the temperatures where phase transitions occur and about the stiffness in the 

glass phase and rubber phase. We will discuss this test in more detail in this chapter. 

 

The cyclic deformation test can also be performed at a constant temperature for a prolonged time 

for fatigue testing. The applied deformation is chosen in such a way that the resulting stress is below 

the yield stress. The test is continued until the specimen breaks. This gives us information about the 

sensitivity of a polymer for brittle failure. Details about this test will be discussed in another chapter. 

 

11.2 DYNAMIC MECHANICAL ANALYSIS 
Dynamic mechanical analysis (DMA) is a technique used to study and characterize materials. A 

sinusoidal deformation is applied and the stress in the material is measured. The temperature of the 

sample or the cycle time of the deformation can be varied. Often a cycle time of about 1 second is 

chosen.  

 

DMA allows a quick comparison of material properties between two materials. The technique can be 

used to determine the linear viscoelastic region of viscoelastic materials.  

 

 
Figure 48: Dynamic mechanical analysis (DMA) 
instrumentation (en.wikipedia.org). 

 
Figure 49: DMA of uPVC and plasticized PVC. 

 

 
Figure 47: Cyclic deformation. 
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In the glass phase, where the polymer is rigid, the stress will follow the applied strain per Hook’s law. 

The ratio of stress and strain is the same as the glass elasticity modulus. The deformation applied to 

the polymer results in deformation by bending of the chain parts of the molecules. 

 

At the glass transition temperature the 

rotation time of the Kuhn segments is 1 

second. That means that during a cycle of 1 

second the stress relaxes from the glass stress 

to the rubber stress. The nett result is that 

the time of maximum stress starts to deviate 

from the time of maximum deformation. The 

stress-time curve is now shifted from the 

strain-time curve, as shown in Figure 50. 

 

In the rubber phase the Kuhn segment 

rotation time is much less than 1 second. The 

deformation applied to the polymer results in 

an immediate deformation by rotation of the 

Kuhn segments. The stress follows the applied 

strain without any shift. The ratio between 

stress and strain in the rubber phase is the 

rubber elasticity modulus. 

 

In the melt phase the reptation time is less than 1 second. During a 1 second cycle of the test the 

rubber stress relaxes due to reptation of the molecules. As near the glass transition temperature this 

leads to a shift in time between stress and strain. The minimum and maximum stresses are now 

found at the moment that the deformation speed is maximum, which means zero deformation. The 

stress is zero when the deformation speed is zero, which means at minimum or maximum 

deformation. 

 

The ratio between stress and deformation and the time shift enables us to calculate a storage 

modulus and a loss modulus. The storage modulus gives information about the elastic behaviour of 

the polymer; the loss modulus gives information about the viscous behaviour of the polymer.  

 

For a perfectly elastic solid, the resulting strain and the stress will be in phase. For a purely viscous 

fluid, there will be a half a cycle time delay of stress with respect to strain. Viscoelastic polymers have 

the characteristics in between where some time shift will occur during DMA tests. A typical DMA 

curve is shown in Figure 51. 

 

 
Figure 50: Deformation (blue) and resulting stress (red) during 
DMA. The amplitude of the stress and the phase shift give 
information about the storage and the loss modulus. 
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Figure 51: Example of DMA curve. Green = storage modulus, red = loss modulus, blue = tangent of loss angle (tg(δ)). At the 
glass transition point Tg the storage modulus suddenly reduces and the loss modulus peaks. 

 

Starting from high temperature and reducing to 0 K a number of transitions will be found. They are 

labelled per the Greek alphabet: 

1. First transition is called alpha-transition. This is usually the glass transition temperature in case of 
amorphous polymers or the crystalline melting point in case of crystalline polymers. 

2. Second is called beta-transition. This transition is usually attributed to the first occurrence of 
chain rotation in case of amorphous polymers. 

3. Third is called gamma-transition. 
4. Etcetera. 
 

11.3 STORAGE MODULUS AND LOSS MODULUS 
For the with time varying strain (t) and stress σ(t) we can write: 

 
Equation 79 

( )tt  sin)( 0=  

 
Equation 80 

( ) ( ) ( ) += tEt d sin0  

 

Where: 

ω = frequency of strain oscillation (rad/s) 

t = time (s) 
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δ = loss angle 

Ed = dynamic modulus  

 

The storage modulus measures the stored energy, representing the elastic portion, and the loss 

modulus measures the energy dissipated as heat, representing the viscous portion. The tensile 

storage and loss moduli are defined as follows: 

 
Equation 81 

( ) ( ) ( ) ( ) ( ) ( ) ( )  ( ) ( ) tEtEtEtEtEt ddd  cos''sin'cossinsincossin 000 +=+=+=  

 

We can now define the storage modulus E’ as: 

 
Equation 82 

( )cos' dEE =  

 

And the loss modulus E’’ as: 

 
Equation 83 
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From this it follows that: 
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The amount of energy per volume W lost during one cycle is given by: 

 
Equation 85 
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So the dissipated energy is linear proportional to the loss modulus, which explains the name of this 

modulus. 

 

11.4 MATHEMATICAL ANALYSIS OF RESPONSE TO CYCLIC DEFORMATION 
The viscoelastic relations are: 
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Boundary conditions: 

• The applied deformation  is uniaxial and varies sinusoidal with a small amplitude: 

benglagla G  3=  and rotrubrub G  3=  
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• During the test the stresses are so small that they do not reduce the rotation time or the 

reptation time. That means that rot and rep are only temperature dependent: 
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Under these conditions the viscoelastic relations reduce to: 
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The differential equations can be solved analytically and result in: 
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It then follows for the resulting stress: 

 
Equation 88 

( ) ( ) ( )
( )

( )( )

( )
( )( )

tGG

tGGtGtGt

reprot

reprotrep

rub

rot

rot
gla

reprot

reprotrep

rub

rot

rot
glarotrubbengla























cos
11

1
3

1
3

sin
11

3
1

333

2222

2

0220

2222

2

022

22

0















++

−
+

+

+














++

+
+

+
=+=

 

 

With the aid of Equation 87 to Equation 88 we now find for the storage modulus E’, the loss modulus 

E’’ and the loss angle δ: 

 
Equation 89 
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Equation 90 
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A plot of Equation 89 to Equation 91 for the storage modulus, the loss modulus and the tangent of 

the loss angle is shown in Figure 52 below. These results have been calculated with the physical 

constants for the viscoelasticity of PVC. The plot clearly shows the glass to rubber transition of PVC at 

about 85 C and the rubber to melt transition near 180 C. 

 

 
Figure 52: Storage modulus (blue), loss modulus (red) and tangent delta (green) for PVC K67. Calculated with Equation 89 to 

Equation 91 using Erot = 1.85 x 10 -19 J, Vrot = 1.5 x 10-27 m3, Ggla = 109 Pa, 0 = 10-13 s and  = 1 s-1. The rubber modulus is 
calculated with the data of chapter 3. 
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12 STRESS RELAXATION AFTER A STEP-DEFORMATION 
12.1 THE RELAXATION PROCESS 
When a plastic body is suddenly deformed 

then a stress will be created inside the body. 

The deformation is kept constant. First the 

stress will be relatively high, but it will 

continuously reduce with time. The speed of 

the stress reduction is fast in the beginning 

and slows down later, as shown in Figure 53. 

 

The reduction of stress with time is called 

stress relaxation. It occurs both in the glass 

phase and in the rubber phase. 

 

In the glass phase the stress relaxation is 

caused by rotation of chain segments (Kuhn segments). The fast decay in the beginning is due to the 

high stress that reduces the segmental rotation time. 

 

In the rubber phase the stress relaxation is caused by reptation of the deformed polymer molecules 

into new positions. The fast decay in the beginning is again due to the high stress that reduces the 

reptation time. 

 

12.2 MATHEMATICAL ANALYSIS OF STRESS RELAXATION AFTER STEP DEFORMATION 
The viscoelastic relations are: 
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Boundary conditions: 

• At time t = 0 a shear deformation 0 is applied. 

• Since the deformation is kept constant the shear rate is zero: 

0
d

dt


=   

• For the glass shear stress and the rubber shear stress we have: 

gla gla benG = , rub rub rotG =  and gla rub  = +  

 

The viscoelastic relations become: 

 
Equation 92 

ben ben

rot

d

dt

 


= −  and rot ben rot

rot rep

d

dt

  

 
= −  

 
Figure 53: Reduction of the stress after a stepwise 
deformation. 
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The step deformation experiment can be done below the glass transition temperature and above the 

glass transition temperature. We will discuss both situations. 

 

12.2.1 Below glass transition temperature 

Below the glass transition the reptation relaxation time rep is infinitely high. The viscoelastic 

relations become: 

 
Equation 93 
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d

dt

 


= −  and rot ben ben

rot

d d

dt dt

  


= = −  

 

According to these equations the 

deformation by bending reduces with time 

and is fully converted into deformation by 

rotation. So, the deformation by rotation 

increases with time. 

 

Usually the stresses involved are high enough 

to influence the rotation relaxation time rot. 

In that case the differential equations can 

only be solved numerically. An example of 

such a numerical solution for PVC at 30 C with 

an initial stress of 30 MPa is shown in Figure 

54. 

 

In case that the stresses are very small (gla << kT/Vrot) then the relaxation time is not influenced by 

the stress. Now the differential equations can be solved analytically. The result is: 

 
Equation 94 
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12.2.2 Above glass transition temperature 

Above the glass transition temperature the rotation relaxation time is very small and the 

deformation by bending can be neglected. The viscoelastic relations now become: 

 
Equation 95 
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Figure 54: Stress relaxation of PVC at 30 C with an initial 
stress of 30 MPa. 
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Now deformation by bending is immediately converted into deformation by rotation and the 

deformation by rotation is lost due to reptation. In case that the rubber stress is high enough to 

influence the reptation relaxation time then this differential equation can only be solved numerically. 

In case that the stress is small enough (rub << kT/Vrep) then the relaxation time is not influenced by 

the rubber stress. The analytical solution is then: 

 
Equation 96 
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13 RECOVERY OF A DEFORMED PLASTIC BODY 
13.1 THE RECOVERY PROCESS 
Given a sufficiently high stress any polymer will deform, even if the temperature is far below the 

glass transition temperature. A good example is yielding of the polymer at the yield stress. 

 

Once the stress is removed after yielding the polymer seems to remain deformed. In reality, the 

polymer will very slowly return to its original dimensions that it had before the deformation. This is 

called recovery. 

 

 
Figure 55: Below the glass temperature a polymer can be 
deformed but will not forget its original shape. 

 
Figure 56: Yielding causes the spherical molecules to be 
deformed into an ellipsoid shape. 

 

Due to the yielding all polymer molecules are deformed from a spherical into an ellipsoid shape. This 

induces a rubber stress in the molecules. The rubber stress will cause Kuhn segments in the 

molecules to rotate in such a way that the spherical shape returns in due time. 

 

At temperatures around the glass transition temperature recovery lasts a few hours. It is a slow 

process. The time for recovery will increase very rapidly at lower temperatures. At a sufficiently low 

temperature recovery is not observable on human time scale. 

  

13.2 MATHEMATICAL ANALYSIS OF RECOVERY AFTER SHEAR DEFORMATION 
The viscoelastic relations are: 
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Boundary conditions: 

• The applied deformation is a shear deformation. For the glass shear stress and the rubber shear 

stress we have: 

gla gla benG =  and rub rub rotG =  

gla

gla

ben

d
G

d




=  and rub

rub

rot

d
G

d




=  

• The recovery is done below the glass transition temperature. We can then safely assume that the 

reptation relaxation time rep is infinitely high.  

• During the recovery process the glass stress and the rubber stress balance each other and the 

total stress  is zero: 

rub gla = −   and 
glarub

dd

dt dt


= −  

 

The viscoelastic relations now become: 

 
Equation 97 
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gla rot
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Since rub gla = −  and ben rot  = +  it follows that: 

 
Equation 98 
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Finally, by combining Equation 97 and 

Equation 98 we obtain a very simple 

differential equation for the recovery of a 

deformed product: 

 
Equation 99 

𝑑𝛾

𝑑𝑡
= −

𝐺𝑟𝑢𝑏

𝐺𝑔𝑙𝑎

𝛾

𝜃𝑟𝑜𝑡
 

 

Figure 57 shows the numerical solution of 

Equation 99  for PVC at 85 C after an initial 

deformation of 300 %. 

 

The rubber stress that balances the glass stress is usually relatively low. That means that the rotation 

relaxation time is not influenced by the stress. In that case the differential Equation 99 can be solved 

mathematically. If the deformation at the start of the recovery process is 0 then the solution of this 

differential equation is: 

 
Figure 57: Recovery of PVC at 85 C after an initial deformation 
of 300 %. 
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Equation 100 
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The recovery process happens on a time scale that is (Ggla/Grub)  1000 times longer than the rotation 

relaxation time. That means that even at the glass transition temperature, where the rotation 

relaxation time is 1 second, the recovery takes at least 1000 seconds or more. It is a very slow 

process. 
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14 PHYSICAL AGING 
14.1 INTRODUCTION 
When a product is made from a polymer usually the polymer is first heated until it is molten (the 

fluid phase), then brought into the correct shape and then cooled down until it is solid again (the 

glass phase). In the glass phase however, the mobility of the large polymer molecules is too slow to 

fully conform to the rapidly changing temperature 

 

There is not enough time for the molecules to move into the correct position or shape that 

corresponds to the current temperature. As a result of this, the polymer molecules “freeze” into far 

from optimal positions. The volume of the polymer is too high directly after cooling. Excess volume 

exists between the polymer molecules. The molecules will move closer together later onwards. 

 

In due time the molecules will move themselves into more favourable positions. This causes the 

volume of the polymer to decrease. The reduction of volume will further reduce the mobility of the 

polymer molecules. As a result, the process of moving into more favourable positions slows down 

even more. It is a self-retarding process. 

 

In due time the polymer structure becomes more compacted, which will influence important 

properties like tensile strength and flexibility. This process of properties changing with time is 

called “physical aging”. 

 

Physical aging is not limited to polymers only. Many materials in day-to-day practice show aging 

effects. A famous example is sand. When sand is first poured into a hole then it can be stirred 

easily. Its surface is too soft to build anything on top of it. The sand grains need to be compacted 

first. This will happen in time due to small vibrations, but it can be accelerated by using a 

compactor.  

 

 
Figure 58: A compactor densifies the sand. 

 
Figure 59: The effect of time or compaction on the 
structure of sand. 

 

Aging of polymers is a slow and self-retarding process. It may take many years before a final 

equilibrium is reached. That causes several properties of the polymer to change slowly: 

• The polymer becomes denser. The volume of a product made from the polymer will reduce 

somewhat. 
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• The tensile strength of the polymer increases. That means that a product made from the polymer 

becomes stronger with time. Slow deformation of the product under continuous load will 

become less. 

• The stiffness of the polymer increases. It becomes more difficult to bend or deform the plastic 

product. 

• The polymer becomes more brittle. That means that a product made from the polymer may 

break more easily when it falls. 

• The fatigue strength reduces. A product made from the polymer under fluctuating load will have 

a shorter lifetime. 

 

Aging of polymers can have rather dramatic effects on our life. For example, a water supply pipe in 

town that suddenly fails after a couple of years of service time. Due to the increasing brittleness, 

rapid crack growth may occur suddenly releasing many cubic meters of water into the street. 

 

 
Figure 60: Aging can cause a polymer pipe for water supply to suddenly break. 

 

Another, less dramatic result of aging is the 

plastic hanging basket with an expansive 

plant that suddenly breaks and falls to the 

floor. 

 

14.2 DEVIATION FROM EQUILIBRIUM STATE 
At temperatures above the glass transition 

temperature TG the Kuhn segment rotation 

time is much less than 1 second. An 

equilibrium between the  and -phase will 

be established almost immediately. However, 

below the glass transition temperature the 

rotation time of the Kuhn segments increases 

to very high levels. Any change in the 

conformation of the structure will need a time 

equal to this rotation time.  

 

During cooling of the polymer from above to 

below the glass transition temperature the structure of the polymer “freezes” at the moment that 

 
Figure 61: A plastic hanging basket may suddenly break and 
fall to the floor after aging. 
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the glass transition temperature has been passed. As a result, the structure of the polymer directly 

after cooling to below the glass transition temperature is one that actually belongs to that of the 

glass transition temperature. A deviation from the equilibrium state has been created. 

 

14.3 SLOW, SELF-RETARDING RETURN TO THE EQUILIBRIUM STATE 
At the start of reaching the temperature T, the actual time dependant size of the co-operative 

rearranging regions (CRR’s) will have the same level as they would have at the glass transition 

temperature: z0(TG). The CRR’s that form the -phase will slowly grow at the cost of the -phase. 

Eventually, after a long time, the size of the CRR’s will reach the equilibrium level z0(T). In the 

meantime, the volume of the polymer will decrease slowly as the -phase occupies less volume then 

the -phase. 

 

The structure of the polymer structure will have to conform to the new situation. The time scale for 

this process is the Kuhn segment rotation time rot. However, the Kuhn segment rotation time will 

increase strongly upon the growing CRR’s since the activation energy for segment rotation increases 

proportional with their size (𝐸𝑟𝑜𝑡 = 𝐸0𝑧). This will slow down the process to reach the equilibrium 

continuously.  

 

14.4 PHYSICAL PROPERTIES CHANGE WITH TIME 
A map of the rotation times, corrected for the aging process of an amorphous polymer after being 

quenched through the glass transition temperature is shown in Figure 62 below. The frequency map 

has become time dependant for temperatures below the glass transition temperature.  

 

 
Figure 62: Frequency map of rotation times in an 
amorphous polymer. 

 
Figure 63: The effect of aging on the yield strength of a 
polymer. 

Below the glass transition temperature physical properties of the polymer that depend on the 

rotation time of the Kuhn elements will continuously change in time. In many cases equilibrium may 

never be reached on human time scale. Examples of such properties are the stiffness, the yield 

strength and the impact strength (Figure 63).  
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Due to physical aging the chain mobility 

reduces in time. The stiffness and the yield 

strength of the polymer will increase. The 

creep of the polymer under prolonged load 

will reduce. 

 

An example for PS and PC is shown in Figure 

64. Due to aging the yield stress of both 

polymers increases logarithmically with the 

elapsed time. 

 

14.5 MATHEMATICAL DESCRIPTION OF 

PHYSICAL AGING 
As long as there is some mobility in the 

macromolecules present physical aging will continue to slowly change the mechanical properties of 

the amorphous polymer. Physical aging will stop when all mobility has ceased to exist.  

 

During the aging process the CRR’s will slowly grow. This growth involves a reduction of the fraction 

of β-phase and an increase of the fraction of the α-phase. Parts of the CRR’s must be freed and 

redistributed. In the glass phase time span of the aging process of the polymer is equal to the Kuhn 

segment rotation time of the polymer molecules: 

 
Equation 101 

𝜃𝑎𝑔𝑖𝑛𝑔 = 𝜃𝑟𝑜𝑡 

 

The current size of the CRR’s at time t is z(t) and the final equilibrium size for temperature T is z(T). 

We may then write for the change of the size of the CRR’s in time: 

 
Equation 102 

𝑑𝑧

𝑑𝑡
=

𝑧−𝑧

𝜃𝑟𝑜𝑡
 with 𝜃𝑟𝑜𝑡 = 𝜃0𝑒𝑥𝑝 (

𝐸0𝑧

𝑘𝑇
) 

 

During the aging process the actual size of the CRR’s z is smaller than the equilibrium size z. Thus, 

the size of the CRR’s will increase with a relaxation time rot. This causes the relaxation time to 

increase, which reduces the speed of the growth of the CRR’s even more. These events continue for 

ever at always reducing speeds. It is a self-retarding process. 

 

It follows for the change of the relaxation time with elapsed time: 

 
Equation 103 

𝑑𝜃𝑟𝑜𝑡

𝑑𝑡
=

𝑑𝜃𝑟𝑜𝑡

𝑑𝐸𝑟𝑜𝑡

𝑑𝐸𝑟𝑜𝑡

𝑑𝑧

𝑑𝑧

𝑑𝑡
=

𝐸0

𝑘𝑇
(𝑧 − 𝑧) 

 

 
Figure 64:  Increase of yield stress after rejuvenation of PS and 
PC. 
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Which results in the following differential equation for the relaxation time during aging: 

 
Equation 104 

𝑑𝜃𝑟𝑜𝑡

𝑑𝑡
= 𝑙𝑛 (

𝜃∞

𝜃𝑟𝑜𝑡
) 

 

The final relaxation time  is described in chapter 4. Mobility of polymer molecules: 

 
Equation 105 

𝜃∞ = 𝜃0𝑒𝑥𝑝 (
𝐸0𝑧

𝑘𝑇
) and  𝑧 = (

3−3𝑝𝛽

2𝑝𝛽
)

3

 with  𝑝𝛽 = 2−𝑇𝑚/𝑇 

 
Equation 103 can only be solved numerically. Usually, the aging process is started by cooling the 

polymer from above to below the glass transition temperature. Therefor the initial size of the CRR’s 

(zini) will be the size they have at the glass transition temperature (TG): 

 

𝑧𝑖𝑛𝑖 = (
3−3𝑝𝑖𝑛𝑖

2𝑝𝑖𝑛𝑖
)

3
 with  𝑝𝑖𝑛𝑖 = 2−𝑇𝑚/𝑇𝐺  

 

The result of the numerical solution for PVC is shown in Figure 65 below. The parameters for PVC 

used are: rot,0 = 10-13 s, Tm = 513 K, TG = 358 K, Tm = 513 K and E0 = 8.9 x 10-21 J. 

 

 
Figure 65: Plot of the relaxation time as a function of the aging time and temperature. rot,0 = 10-13 s, Tm = 513 K, Tg = 358 K 
and E0 = 8.9 x 10-21 J. 

 

Aging starts when the elapsed time is about 1 to 10 % of the initial relaxation time. For PVC at a 

temperature of -50 C aging starts after an elapsed time of about 106 seconds, which is about 10 days. 
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From that time onwards the relaxation time increases linearly with the elapsed time until equilibrium 

has been reached. This is usually after a very long time. 

 

Aging stops when the size of the CRR’s has become equal to the equilibrium size, as specified in 

Equation 105. In practice this will only happen close to the glass transition temperature. At lower 

temperatures the time needed to reach equilibrium is usually much longer than the service lifetime 

of the polymer products as indicated in the graph. For example, at a temperature of 50 C the time 

needed to reach equilibrium is already 1011 s, which is about 3000 years! 

 

In the aging region the relaxation time increases linearly with the elapsed time (rot is about 10 to 100 

times the elapsed time). In the aging region the relaxation time is also dependant on the 

temperature. However, this temperature dependency is much less than outside the aging region as 

shown in Figure 65. For a change in temperature from 0 C to 70 C the relaxation time in the aging 

region reduces only 100 times. 

 

14.6 ACTIVATION ENERGY FOR KUHN SEGMENT ROTATION AND PHYSICAL AGING 
It has been explained that, after cooling the polymer down into the glass phase, the size of the CRR’s 

slowly increases. This continues until the equilibrium size of the CRR’s has been reached. The growing 

CRR’s increase the activation energy for segmental rotation (Erot). Due to this increasing activation 

energy many properties of the polymer change with time. 

 

Actually, the aging process and the changing activation energy are one and the same thing. At any 

moment in time the activation energy for segmental rotation can be calculated from 𝐸𝑟𝑜𝑡 =

𝑘𝑇𝑙𝑛(𝜃𝑟𝑜𝑡 𝜃0⁄ ). By using the relaxation times from Figure 65 we obtain the changing 

activation energy for segmental rotation for PVC at several temperatures:  
 

 
Figure 66: Activation energy for Kuhn segment rotation versus the aging time. Data calculated from Figure 65 with 𝐸𝑟𝑜𝑡 =

𝑘𝑇𝑙𝑛(𝜃𝑟𝑜𝑡 𝜃0⁄ ). 



All about viscoelasticity in the solid and molten phase 

67 

 

At short times the activation energy of PVC is 1.5 x 10-19 J, which is the activation energy at the glass 

transition temperature. After some time, the activation energy starts to increase logarithmically with 

time (𝜃𝑟𝑜𝑡~𝑙𝑛(𝑡)). Other things of interest are: 

• At a rather low temperature of -40 C the activation energy starts to increase after about 105 s (1 

day). We can say that at this temperature aging starts to have effect on the material properties 

after about one day.  

• At room temperature (20 C) the aging starts already after 10 seconds, continuing up to at least 

108 seconds (3 years). Products made from PVC are rather flexible directly after production and 

become noticeably stiffer after one day. 

• The largest effect of aging is found at a temperature some 30 C below the glass transition 

temperature. 

• Close to the glass transition temperature (80 C) the effect of aging is limited because the 

response time of the molecules is short and equilibrium is quickly reached. 

 

14.7 PHYSICAL AGING AND THE YIELD STRESS 
In chapter 9 it has been proven that the yield stress of a polymer is, amongst other things, dependant 

on the activation energy for segmental rotation: 

 
Equation 106 

𝜎𝑦 =
𝐸𝑟𝑜𝑡

𝑉𝑟𝑜𝑡
+

𝑘𝑇

𝑉𝑟𝑜𝑡
𝑙𝑛 (

6𝐺𝑔𝑙𝑎𝑉𝑟𝑜𝑡

𝑘𝑇
) +

𝑘𝑇

𝑉𝑟𝑜𝑡
𝑙𝑛 (𝜃𝑟𝑜𝑡,0

𝑑𝜀

𝑑𝑡
) 

 

Since aging causes the activation energy to increase almost logarithmically with time this means also 

that aging causes the yield stress to increase logarithmically with time. This is illustrated in Figure 63 

for PS and PC. 

 

14.8 MECHANICAL REJUVENATION 
Physical aging can be undone by heating to above the glass transition temperature. An alternative 

method to remove physical aging is by mechanical deformation of the polymer to above the yield 

point. This is called mechanical rejuvenation.  

 

In both cases the size of the CRR’s is reduced. A temperature above Tg simply result in a new 

equilibrium with smaller CRR’s. The mechanical deformation below Tg breaks the large CRR’s into 

smaller ones due to the large stress applied. The rejuvenation will not last for a long time. After a 

couple of hours (or days, depending on the polymer) the physical aging will revert the effect of 

rejuvenation. 
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A well-known effect of physical aging and 

mechanical rejuvenation is observed during 

the tensile or compression test. Upon 

deformation of the polymer the stress will first 

increase until the yield point. The stress 

suddenly drops to a 10 to 20 % lower value, 

after which it starts to increase again (see 

Figure 67). 

 

At the start of the compression test the 

deformation and the stress are small. The 

chain segments of the macromolecules will 

only bend a little. The activation energy for 

rotation is relatively high of the aged polymer. 

As soon as the stresses are high enough to 

force the chain segments to rotate the polymer starts to yield. At that moment the rotating chain 

segments push the neighbouring molecules aside thus breaking the CRR’s into smaller pieces and 

reducing the activation energy for further rotations. This will cause the yield stress to decrease 

during further deformation. At larger deformations the macromolecules become oriented. This will 

cause the stress to increase again. This last effect is called strain hardening. 

 

 
Figure 67: Stress - strain diagram obtained from a 
compression test. The drop of the stress after the yield point 
is caused by mechanical rejuvenation. 
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15 CREEP OF POLYMERS 

 
Figure 68: A glacier slowly creeps into the sea. 

Most materials under continuous load will slowly deform. Typical examples are metals, window glass, 

plastics, ice and rock. Ancient glass windows in churches have deformed under gravity in such an way 

that at the bottom the glass has become thicker than at the top. The ice of the glaciers slowly flows 

downwards and the basalt rocks in a mountain become plastically deformed by gravity forces. So 

plastics is just one group of the very many materials that show slow deformation once subjected to a 

force for a prolonged time. The common name for this slow deformation under load is creep. 

 

15.1 DESCRIPTION OF THE CREEP PROCESS 
When a load is put on a body made from a polymer it will be deformed. This deformation is time 

dependant, as shown in Figure 69 and consists of two parts: 

1. An elastic deformation that occurs immediately after applying the load. 

2. A plastic deformation that grows in time for the duration of the load. 
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After removing the load, the elastic 

deformation will disappear immediately. 

The plastic deformation, however, will 

take a long time to disappear. Under 

practical circumstances time will be too 

short to remove all plastic deformation. 

Some plastic deformation will be left in 

the product. 

 

The load on the body has changed the 

shape of the polymer molecules by 

rotation of the chain segments. A part of 

this deformation will be recovered after some time. This is due to the rubber stress that is induced in 

the body due to the deformation. This rubber stress forces the polymer molecules back into their 

original shapes. This recovery process will take a long time however, because the rubber stress is 

relatively low (see chapter 13 Recovery of a deformed plastic body). 

 

15.2 CREEP OR PLASTIC FLOW? 
The speed with which the dimensions of the polymer body under load change (the strain rate) is 

strongly dependant on the height of the load (stress) and on the temperature of the body. Increasing 

loads and increasing temperatures will increase the speed of this process. 

1. Under low stresses, it may take hours or days before some noticeable dimension changes can be 

observed. This slow process of changing dimensions is called creep. 

2. Under high stresses, noticeable dimension changes can be seen already after seconds or 

minutes. This fast process of changing dimensions is called plastic flow. 

 

Although the names are different, 

the underlying process is the same. 

In both cases the polymer molecules 

are deformed due to the rotation of 

the chain segments under load. The 

main difference between the two is 

the speed of the process. 

 

Figure 70 shows a schematic 

representation of the deformation of 

a product under stress changing with 

time. This is called a creep curve. In 

this example three different creep 

curves are shown for three different 

stresses (1 is the lowest and 3 is 

the highest stress on the body). 

 

 
Figure 69: The deformation of a polymer body changes in time. 

 

 

Figure 70: The deformation of a polymer body changes in time. 
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In case of the lowest stress the load (or stress) becomes 

balanced with the elastic rubber stress caused by 

deformation of the body. The dimensions of the body 

stop changing. In case of the two higher stresses such a 

balance is not obtained. Instead, the speed of the 

deformation increases until finally rupture of the body 

occurs.  

 

Failure due to creep occurs as soon as the deformation 

exceeds a certain limit. This limit is the strain at which 

the polymer yields in a tensile test (see chapter 9).  

 

Creep is an important mechanism for failure of plastic 

products under long-time load. An example of such a 

failure in a plastic pipe is shown in Figure 71.  

 

15.3 CREEP AND PHYSICAL AGING 
The creep curve of a polymer can be roughly divided into 

three regions: the primary, the secondary and the 

tertiary region. 

 

Initially: 

Directly after applying the load the polymer deforms elastically. The stress – strain relation can be 

described by Hooke’s law ( = E). There is no creep yet: the segments of the macromolecules only 

bend under the applied stress. 

 

Primary creep: 

After some time, the chain segments of the macromolecule will rotate under influence of the stress. 

The conformation of the macromolecules changes. This is reflected in a continuous increase of the 

strain with time. Although the deformation of the body increases, the speed of the deformation 

reduces continuously.  

 

The reduction of the speed of deformation is partly due to the increasing rubber stress that reduces 

the nett load. In case that the load on the body is small enough, the increasing rubber stress will 

eventually exceed the external load. The strain rate then reduces to zero and the body will stop 

deforming. 

 

More important however, is the influence of physical aging. The creep process takes so much time 

that physical aging can reduce the mobility of the chain segments while creep is still ongoing. The 

rotation time of the chain segments increases linearly with the elapsed time during aging. Therefor 

physical aging reduces the speed of deformation during creep inversely proportional with the 

elapsed time. 

 

Secondary creep: 

Eventually the deformation of the polymer body is large enough to induce a beginning of mechanical 

rejuvenation in the plastic. Now the mobility of the chain segments increases. The speed of 

deformation (strain rate) stops reducing and becomes approximately constant. 

 

 
Figure 71: Failure of a plastic pipe due to creep 
rupture. 
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Tertiary creep: 

After prolonged time the strain in the polymer will reach a level that corresponds to the yield point in 

a tensile test. The plastic becomes fully rejuvenated. Now the chain segments of the polymer 

molecules will rotate easily under stress. The speed of deformation of the polymer suddenly 

increases, followed by a failure at higher strains.  

 

15.4 MATHEMATICAL DESCRIPTION OF THE CREEP PROCESS 
The viscoelastic relations are: 
𝑑𝜎𝑔𝑙𝑎

𝑑𝑡
=

𝑑𝜎𝑔𝑙𝑎

𝑑𝜀𝑏𝑒𝑛

𝑑𝜀

𝑑𝑡
−

𝜎𝑔𝑙𝑎

𝜃𝑟𝑜𝑡
 with 𝜃𝑟𝑜𝑡 = 𝜃𝑟𝑜𝑡,0 𝑒𝑥𝑝 (

𝐸𝑟𝑜𝑡

𝑘𝑇
)

𝑉𝑟𝑜𝑡𝜎𝑔𝑙𝑎

𝑘𝑇
𝑠𝑖𝑛ℎ (

𝑉𝑟𝑜𝑡𝜎𝑔𝑙𝑎

𝑘𝑇
)⁄  

𝑑𝜎𝑟𝑢𝑏

𝑑𝑡
=

𝑑𝜎𝑟𝑢𝑏

𝑑𝜀𝑟𝑜𝑡

𝑑𝜀𝑏𝑒𝑛

𝑑𝜎𝑔𝑙𝑎

𝜎𝑔𝑙𝑎

𝜃𝑟𝑜𝑡
−

𝜎𝑟𝑢𝑏

𝜃𝑟𝑒𝑝
 with 𝜃𝑟𝑒𝑝 = 𝜃𝑟𝑒𝑝,0 𝑒𝑥𝑝 (

𝐸𝑟𝑜𝑡

𝑘𝑇
)

𝑉𝑟𝑒𝑝𝜎𝑟𝑢𝑏

𝑘𝑇
𝑠𝑖𝑛ℎ (

𝑉𝑟𝑒𝑝𝜎𝑟𝑢𝑏

𝑘𝑇
)⁄  

𝜎 = 𝜎𝑔𝑙𝑎 + 𝜎𝑟𝑢𝑏  

𝜀 = 𝜀𝑏𝑒𝑛 + 𝜀𝑟𝑜𝑡  

 

Boundary conditions: 

• During the creep test the plastic is uniaxially deformed. The relation between glass stress and 

deformation is therefore described by Equation 34:  

𝜎𝑔𝑙𝑎 = 𝐺(𝑒𝑥𝑝(2𝜀𝑏𝑒𝑛) − 𝑒𝑥𝑝(−𝜀𝑏𝑒𝑛))  

• The material yields and fails at relatively low strains (0.2 to 0.3) and that results in a simple 

relation between stress and strain: 

𝜎𝑔𝑙𝑎 = 3𝐺𝑔𝑙𝑎𝜀𝑏𝑒𝑛 and 𝜎𝑟𝑢𝑏 = 3𝐺𝑟𝑢𝑏𝜀𝑟𝑜𝑡 

• The total stress on the plastic body is constant: 

𝜎 = 𝜎𝑔𝑙𝑎 + 𝜎𝑟𝑢𝑏 = 𝜎𝑙𝑜𝑎𝑑 

• The creep test is usually done below the glass transition temperature. Under these circumstances 

we assume the reptation time (rep) to be infinite: 
𝑑𝜎𝑟𝑢𝑏

𝑑𝑡
=

𝑑𝜎𝑟𝑢𝑏

𝑑𝜀𝑟𝑜𝑡

𝑑𝜀𝑏𝑒𝑛

𝑑𝜎𝑔𝑙𝑎

𝜎𝑔𝑙𝑎

𝜃𝑟𝑜𝑡
 

 

The viscoelastic equations now simplify to: 

 
Equation 107 

𝑑𝜎𝑔𝑙𝑎

𝑑𝑡
= 3𝐺𝐺𝑔𝑙𝑎

𝑑𝜀

𝑑𝑡
−

𝜎𝑔𝑙𝑎

𝜃𝑟𝑜𝑡
  

𝑑𝜎𝑟𝑢𝑏

𝑑𝑡
=

𝐺𝑟𝑢𝑏

𝐺𝑔𝑙𝑎

𝜎𝑔𝑙𝑎

𝜃𝑟𝑜𝑡
 

𝜎 = 𝜎𝑔𝑙𝑎 + 𝜎𝑟𝑢𝑏 = 𝜎𝑙𝑜𝑎𝑑 

𝜀 = 𝜀𝑏𝑒𝑛 + 𝜀𝑟𝑜𝑡  

 

After some rewriting, we find for the strain rate during creep: 

 
Equation 108 

𝑑𝜀

𝑑𝑡
=

𝜎𝑙𝑜𝑎𝑑 − 3𝐺𝑟𝑢𝑏𝜀

3𝐺𝑔𝑙𝑎𝜃𝑟𝑜𝑡
 

 

The creep rate depends on the nett load and the chain segment rotation time, which is exponentially 

dependant on the nett load. 
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If the load on the body is low enough then the increasing rubber stress (3Grub) will eventually 

balance the external load. The creep rate d/dt will become zero and the creep deformation will 

stop. 

 

In most cases however, the creep rate will reduce because of the effects of physical aging. In chapter 

14 we have seen that in the aging region the relaxation time increases linearly with the elapsed time 

(rot is about 10 to 100 times the elapsed time). 

 
Equation 109 

𝑑𝜃𝑟𝑜𝑡

𝑑𝑡
= 𝑙𝑛 (

𝜃∞

𝜃𝑟𝑜𝑡
) ≈ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

We simplify this by inserting rot = At into Equation 108: 

 
Equation 110 

𝑑𝜀

𝑑𝑡
=

𝜎𝑙𝑜𝑎𝑑 − 3𝐺𝑟𝑢𝑏𝜀

3𝐺𝑔𝑙𝑎𝐴𝑡
 

 

According to Equation 110 the creep rate will reduce inversely proportional with the elapsed time as 

long as physical aging active. In Figure 72 examples of this behaviour in a plastic and in a metal alloy 

are shown.  

 

This will only be valid in the primary region of creep. In the secondary and tertiary region the aging 

effect will be neutralized by mechanical rejuvenation.  

 

 
 

Figure 72: Creep rate versus time of a polymer and a metal alloy. 
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16 MECHANICAL ANALOGUE FOR STRESS IN POLYMERS 
16.1 MODEL DESCRIPTION 
Viscoelastic materials, like plastics, consist of long fiber-like particles. In case of plastics the fibers are 

formed by the macromolecules that are entangled with each other. Due to this structure, plastics can 

store elastic energy, at least temporarily. 

 

Depending on the temperature these macromolecules can be stiff or flexible, causing the polymer to 

be in the glass phase or in the rubber phase. At even higher temperatures the macromolecules are 

able to move (reptate) into other positions. By then the plastic behaves like a fluid. It is in the melt 

phase. 

 

In the previous chapters we have explained how the macroscopic behavior of the plastics (glass, 

rubber and melt phase, stress relaxation, creep, etcetera) are related to the molecular properties. 

This is good for a fundamental understanding of the physical properties of polymers. However, it may 

be difficult to extrapolate this knowledge into day-to-day practice for polymer products. 

 

It is therefore common practice to visualize the plastic as a combination of springs and dashpots. The 

springs describe the elastic behavior of the plastic; the dashpots describe the viscous behavior of the 

plastic. Such a spring – dashpot representation of a polymer is shown in the figure below. 

 

 
 

Spring 1 is a spring with a high stiffness. The spring modulus is the glass modulus (Ggla). It represents 

the glass stress in the polymer. Dashpot 1 will change its length after a relatively short time: the 

segmental rotation time (rot). It represents the viscous dissipation due to rotation of the chain 

segments. Spring 2 is a spring with a low stiffness. The spring modulus is the rubber modulus (Grub), 

which is about 1000 times less than the glass modulus. It represents the rubber stress in the polymer. 

Dashpot 2 will change its length after a relatively long time: the reptation time (rep). It represents 

the viscous dissipation due to reptation of the macromolecules. 
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16.2 SOME EXAMPLES 
16.2.1 Glass phase 

Both the rotation time and the reptation time are large. Dashpots 1 and 2 are fully blocked. The 

stiffness of the system is that of the sum of both springs. The stiffness of spring 1, which represents 

the glass stress, is about 1000 times higher than that of spring 2. Therefor the glass stress is the most 

important stress in the glass phase.  

 

16.2.2 Rubber phase 

The rotation time is low (less than 1 second) but the reptation time is still large. Therefore dashpot 1 

can move but dashpot 2 is still blocked. Spring 1, representing the glass stress becomes unloaded. 

Upon deformation the stress in the system will be represented by that of spring 2: the rubber stress. 

 

16.2.3 Melt phase 

Both the rotation time and the reptation time are low now. Both dashpot 1 and 2 can move. Any 

stress generated by deformation of the system (spring 1 and spring 2) will reduce in time due to the 

moving dashpots (stress relaxation). Since the segmental rotation time is much less than the 

reptation time, the stress of spring 1 will always be zero. The stress in the system is controlled by that 

of spring 2. The typical time with which the stress reduces is controlled by dashpot 2 (reptation time). 

 

16.2.4 Viscous flow of melt 

The speed of deformation of the plastic is high. Due to the high temperature in the plastic dashpots 1 

and 2 are unblocked. Yet, dashpot 2 (reptation) still creates some resistance as long as the speed of 

deformation of the polymer (spring 2) exceeds that of dashpot 2. The rubber stress in the plastic will 

increase. The segmental rotation time (dashpot 1) is so low that the glass stress (spring 1) will remain 

zero. 

 

 
 

Upon ongoing deformation, the rubber stress (spring 2) will increase. Due to the increasing stress the 

reptation time (dashpot 2) reduces. It becomes increasingly difficult to create additional stress. 
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Eventually the speed of dashpot 2 will match the speed of deformation. The stress will now remain 

constant during deformation. The ratio between stress and speed of deformation is called viscosity. 

 

16.2.5 Creep 

Creep of the polymer is usually measured in the glass phase. A constant stress is applied to the 

product. Dashpots 1 and 2 are fully blocked on short time scale. Immediately after applying the stress 

spring 1 will be deformed. The initial deformation is elastic and fully recoverable.  

 

The segmental rotation time (dashpot 1) is very long but not infinite. That means that dashpot 1 can 

very slowly move when waiting long enough. The deformation of the product now slowly increases 

which is called creep. 

 

 
 

During the creep process spring 2, representing the rubber stress, is slowly extended while dashpot 2 

(reptation) is fully blocked. Due to this the rubber stress in the product (spring 2) will slowly increase, 

counteracting the externally applied stress. This slows down the speed of the creep process. 

 

On removing the stress spring 1 becomes undeformed immediately. The total deformation is partially 

undone. This part is called elastic recovery. The plastic is still deformed and the rubber stress present 

(spring 2) will slowly reduce the deformation by stimulating segmental rotation (dashpot 1). Due to 

the low level of the rubber stress a full recovery is impossible during the time span available. 

 

16.2.6 Yield stress 

The yield stress is usually important for the polymer in the glass phase. Both the rotation time and 

the reptation time are large. Dashpots 1 and 2 are fully blocked. The deformation of the product is 

continuously increased. Upon increasing the deformation, the stress in spring 1 increases (dashpot 

1). The stress in spring 2 can be neglected. Due to the increasing stress the segmental rotation time 

will reduce. Once the segmental rotation time becomes less than 1 second the segments start to 

rotate and dashpot 1 starts moving. From this moment on spring 1 cannot create additional stress 

anymore. The stress remains constant and equals the yield stress. 
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16.3 MATHEMATICAL DESCRIPTION OF THE SPRING – DASHPOT MODEL 
The mechanical model presented for polymers consist of two parallel spring – dashpot combinations: 

1. A dashpot and spring for the glass phase. The stiffness of the spring corresponds to the glass 

modulus and the time response of the dashpot corresponds to segmental rotation. 

2. A dashpot and spring for the rubber phase. The stiffness of the spring corresponds to the rubber 

modulus and the time response of the dashpot corresponds to reptation of the macromolecules. 

 

The mathematical description of the stresses in this model is described by: 

 
Equation 111 

𝑑𝜎𝑔𝑙𝑎

𝑑𝑡
= 𝐺𝑔𝑙𝑎

𝑑𝜀

𝑑𝑡
−

𝜎𝑔𝑙𝑎

𝜃𝑟𝑜𝑡
 

𝑑𝜎𝑟𝑢𝑏

𝑑𝑡
= 𝐺𝑟𝑢𝑏

𝑑𝜀

𝑑𝑡
−

𝜎𝑟𝑢𝑏

𝜃𝑟𝑒𝑝
 

𝜎 = 𝜎𝑔𝑙𝑎 + 𝜎𝑟𝑢𝑏 
 

These equations are almost identical to those of the original molecular model presented earlier: 

 
Equation 112 

𝑑𝜎𝑔𝑙𝑎

𝑑𝑡
= 𝐺𝑔𝑙𝑎

𝑑𝜀

𝑑𝑡
−

𝜎𝑔𝑙𝑎

𝜃𝑟𝑜𝑡
 

𝑑𝜎𝑟𝑢𝑏

𝑑𝑡
=

𝐺𝑟𝑢𝑏

𝐺𝑔𝑙𝑎

𝜎𝑔𝑙𝑎

𝜃𝑟𝑜𝑡
−

𝜎𝑟𝑢𝑏

𝜃𝑟𝑒𝑝
 

𝜎 = 𝜎𝑔𝑙𝑎 + 𝜎𝑟𝑢𝑏 

 

In the original molecular model, the glass stress due to bending of chain segments is converted into 

rubber stress due to rotation of chain segments. So, deformation first creates glass stress which is 

then converted into rubber stress after some time. In the current mechanical model now discussed 

deformation creates both glass stress and rubber stress at the same time. This difference in the 

models creates the difference in the equations describing the stress. 

 

In practice the results of the calculations with the equations for the molecular model en the 

mechanical model will be very close to each other. The reason for this is the fact that for all polymers 

the rubber modulus is about 1000 times less than the glass modulus. This reduces the error in the 

mechanical model to less than 0.1 %. 
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17 SOME PHYSICAL PROPERTIES OF POLYMERS 
Pol. 

name 
Mol. 

Weight 
(g/mol) 

Mass 
repeat 

unit 
(g/mol) 

Char. 
ratio 

Netw. 
density 

(m-3) 

Density 
(kg/m3) 

Glass 
shear 

modulus 
(MPa) 

Glass 
trans. 
temp. 

(C) 

Cryst. melt. 
temp. 

(C) 

PVC 140000 62,5 6,5 1.0x1026 1380 1000 85 240 

PC 21600 254,3 1,3 3.9X1026 1220 700 147 357 

PS 
 

104,1 6,4 3.0x1025 1050 1100 95 279 

PMMA 
 

100,1 8,2 8.0x1025 1180 1100 110 302 

 


