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10 VISCOSITY (MELT PHASE) 
10.1 DEFINITION OF VISCOSITY 
Consider a cube made from an elastic 
material, having ribs with length h. The cube 
is glued to a table. If we would apply a force 
to the top of the cube parallel to the surface 
of the table then the top of the cube will be 
displaced over a distance ∆x, as shown in 
Figure 44. This kind of deformation is called 
shear deformation. Its value is the 
deformation divided by the height ∆x/h. The 
force acting on the cube divided by the area 
of the cube (F/h2) is called the shear stress.  
 
The ratio between the shear stress and the shear deformation is called the shear modulus. It can be 
calculated from: 
[shear modulus] = [shear stress] / [shear deformation]   or  [shear stress] = [shear modulus] * [shear 
deformation] 
 
Now suppose that the cube is made from a fluid like water or molten polymer. If a shear stress would 
be applied to this cube, then the top of the cube would continuously move in the direction of the 
stress with a certain velocity as long as the force exists. This continuous deformation is called shear 
rate and it is defined as the velocity of the top v divided by the height h: v/h. 
 
The ratio between the shear stress and the shear rate is called the viscosity. It can be calculated 
from:  
[viscosity] = [shear stress] / [shear rate]  or  [shear stress] = [viscosity] * [shear rate] 
In mathematical form: 
 
Equation 70 

dt

d   or 
dt

d   

 
The viscosity is an important material property of a fluid. With the aid of the viscosity the shear stress 
can be calculated when the fluid is sheared. Eventually this gives us the possibility to calculate the 
required pressure to move a fluid through a channel. 
 

10.2 HOW TO CALCULATE THE VISCOSITY FROM THE DIFFERENTIAL EQUATION 
In chapter 8 we have shown the general outline of the differential equation for the rubber and melt 
phase: 
[change of rubber stress per unit of time] = + [change of rubber stress due to deformation per unit 
time] – [rubber stress] / [rubber relaxation time] 
 
This differential equation can be used for the calculation of the viscosity from the material 
properties. The rubber stress is the same as the shear stress. We assume that after some time of 

 
Figure 44: Cube deformed by a shear stress. 
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shearing the shear stress has become constant. We have a dynamic equilibrium. That means that the 
change of stress has become zero: 
0 = + [change of rubber stress due to deformation per unit time] – [shear stress] / [rubber relaxation 
time] 
 
The change of rubber stress per unit time is the shear modulus times the shear rate: 
[change of rubber stress due to deformation per unit time]= [shear modulus] * [shear rate]  
 
By combining these two equations we get: 
0 = [shear modulus] * [shear rate]] - [shear stress] / [relaxation time] 
 
This can be rewritten into: 
[shear stress] = [shear modulus] * [relaxation 
time] * [shear rate] 
 
Remember that the viscosity has been 
defined as: 
[viscosity] = [shear stress] / [shear rate]   
 
Which gives us the following result for the 
viscosity: 
[viscosity] = [shear modulus] * [relaxation 
time]   
 
By using a differential equation in a dynamic equilibrium, we have proven that the viscosity of a fluid 
is simply the shear modulus time the relaxation time. Since the relaxation time of a polymer strongly 
reduces with the applied stress it follows that the viscosity of a polymer will also decrease with 
increasing shear stress or shear rate. This is a commonly observed phenomenon with polymers as 
shown in Figure 45. 
 

10.3 MATHEMATICAL DERIVATION OF VISCOSITY VERSUS SHEAR STRESS AND SHEAR RATE 
The viscoelastic relations are: 
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Boundary conditions: 
 The polymer is under a constant rate of deformation (d/dt) and the stresses do not change 

anymore: 
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Figure 45: The viscosity of a polymer reduces with increasing 
shear rate or shear stress. 
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The viscoelastic relation for the glass stress then becomes: 
 
Equation 71 
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From which follows: 
 
Equation 72 
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For the total stress created by the deformation rate we find: 
 
Equation 73 
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We consider the case that the deformation of the polymer is a shear deformation, usually denoted 
by : 
 
Equation 74 

gla gla benG   , rub rub rotG   and 
d d
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 
   

 
By combining Equation 73 with Equation 74 we find for the relation between the stress and the strain 
rate: 
 
Equation 75 
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The shear viscosity s of a polymer is defined as: 
 
Equation 76 

𝜎 = 𝜂௦

𝑑𝛾

𝑑𝑡
 

 
It then follows for the shear viscosity of a polymer: 
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Equation 77 

s gla rot rub repG G     

 
Shear viscosity is usually determined in the rubber phase. In that case the product Grubrep is much 
higher than Gglarot (Grub is 1000 times lower than Ggla but rep is 106 to 108 time higher than rot). 
Therefor the shear viscosity of a rubber is simply the product of the shear modulus and the rubber 
relaxation time: 
 
Equation 78 

𝜂௦ = 𝐺௥௨௕𝜃௥௘௣ 
 
 Equation 78 combined with the equation for the reptation relaxation time gives us: 
 
Equation 79 
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In Equation 79 we have defined the zero-stress (or zero-shear) viscosity s,0 as: 
 
Equation 80 

𝜂௦,଴ = 𝐺௥௨௕𝜃௥௘௣,଴ 𝑒𝑥𝑝 ൬
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In Figure 46 the viscosity of PVC at 180 to 200 C has been calculated with the aid of and Equation 79 
with the physical constants of PVC. The viscosity data are logarithmically plotted versus the shear 
stress. Note that at higher stresses the viscosity s decrease approximately exponentially with the 
shear stress rub.  
 
Note that in the model described above the viscosity is described as a function of the stress. From a 
physical perspective this is natural because it is the stress that the polymer molecules experience. 
Increasing stress will reduce the viscosity because the relaxation time of the rubber stress reduces. 
 
In practice the viscosity is however often represented as a function of the shear rate. The equation 
that describes the shear rate dependence of the viscosity can be derived from Equation 79: 
 
Equation 81 

𝜂௦ =
𝑘𝑇

𝑉௥௘௣

1

𝑑𝛾
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൰

ଶ

቏ 

 
Equation 81 describes the viscosity as a function of the shear rate. It has been plotted for PVC at 180 
to 200 C in Figure 47.  
 

 
Figure 46: Shear viscosity of PVC K67 versus shear stress. 
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10.4 THE POWER LAW MODEL 
10.4.1 Low shear rates 
At low shear rates the viscosity of the polymer is independent of the shear rate. The polymer melt 
behaves Newtonian. According to Equation 81 for small shear rates the viscosity becomes equal to 
the zero-shear viscosity: 
 
Equation 82 

𝜂௦ = 𝜂௦,଴ 
 
This equation is only valid for low enough shear rates: 
ௗఊ

ௗ௧
≪

௞்

௏ೝ೐೛ఎೞ,బ
  

 
10.4.2 High shear rates 
At high shear rates ൫𝑑𝛾 𝑑𝑡⁄ ≫ 𝑘𝑇 𝑉௥௘௣𝜂௦,଴⁄ ൯ the viscosity approximates to be a power of the shear 
rate. The polymer melt behaves non-Newtonian. In this region Equation 81 reduces to: 
 
Equation 83 
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Figure 47: Shear viscosity of PVC K67 versus shear rate. At shear rates below 1 s-1 the behaviour is Newtonian, above 10 s-

1 the behaviour is non-Newtonian. 
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In a log viscosity – log shear rate plot as Figure 47 such a dependence shows up to be an almost 
straight line, the slope of it being between -0.5 and -1.0. This feature is used to make a simple 
description of the viscosity versus shear rate. It is called the power law: 
 
Equation 84 

ఎೞ

ఎ∗
= ቀ

ௗఊ

ௗ௧
ቁ

௡ିଵ
  

 
In this equation n is called the power law index. * is the viscosity at a shear rate of 1 s-1. From 
Equation 81 the value of n can be derived by using 𝑛 − 1 = 𝑑𝑙𝑛(𝜂௦) 𝑑𝑙𝑛(𝑑𝛾 𝑑𝑡⁄ )⁄ : 
 
Equation 85 

𝑛 =
𝑘𝑇

𝑉௥௘௣𝜂௦,଴
𝑑𝛾
𝑑𝑡

 

 
For high enough shear rates, the viscosity becomes inversely proportional to the shear rate because 
the power law index n tends to 0.  
 
Note that especially at the higher shear rates the viscosities of the different temperatures seem to 
coincide. When operating at constant shear rate with increasing temperatures the stress will reduce. 
This increases the relaxation time and counteracts for a part the viscosity reduction due to 
temperature increase.  
 


